Results 1  10
of
28,902
Approximation Algorithm for the Kinetic Robust KCenter Problem
, 2009
"... Two complications frequently arise in realworld applications, motion and the contamination of data by outliers. We consider a fundamental clustering problem, the kcenter problem, within the context of these two issues. We are given a finite point set S of size n and an integer k. In the standard k ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
kcenter problem, the objective is to compute a set of k center points to minimize the maximum distance from any point of S to its closest center, or equivalently, the smallest radius such that S can be covered by k disks of this radius. In the discrete kcenter problem the disk centers are drawn
Approximation Algorithm for the Kinetic Robust KCenter Problem
"... Clustering is an important problem and has numerous applications. In this paper we consider an important clustering problem, called the kcenter problem. We are given a discrete point set S and a constant integer k, and the goal is to compute a set of k center points to minimize the maximum distance ..."
Abstract
 Add to MetaCart
Clustering is an important problem and has numerous applications. In this paper we consider an important clustering problem, called the kcenter problem. We are given a discrete point set S and a constant integer k, and the goal is to compute a set of k center points to minimize the maximum
Approximation Algorithms for the KCenter
 Proc. OR 2002
, 2002
"... In this paper we deal with the vertex kcenter problem, a problem which is a part of the discrete location theory. Informally, given a set of cities, with intercity distances specified, one has to pick k cities and build warehouses in them so as to minimize the maximum distance of any city from its ..."
Abstract
 Add to MetaCart
In this paper we deal with the vertex kcenter problem, a problem which is a part of the discrete location theory. Informally, given a set of cities, with intercity distances specified, one has to pick k cities and build warehouses in them so as to minimize the maximum distance of any city from its
Detectability of Discrete Event Systems
"... In this paper, we investigate the detectability problem in discrete event systems. We assume that we do not know initially which state the system is in. The problem is to determine the current and subsequent states of the system based on a sequence of observation. The observation includes partial ev ..."
Abstract

Cited by 806 (14 self)
 Add to MetaCart
In this paper, we investigate the detectability problem in discrete event systems. We assume that we do not know initially which state the system is in. The problem is to determine the current and subsequent states of the system based on a sequence of observation. The observation includes partial
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 506 (0 self)
 Add to MetaCart
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 881 (0 self)
 Add to MetaCart
A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
MIXED MNL MODELS FOR DISCRETE RESPONSE
 JOURNAL OF APPLIED ECONOMETRICS J. APPL. ECON. 15: 447470 (2000)
, 2000
"... This paper considers mixed, or random coefficients, multinomial logit (MMNL) models for discrete response, and establishes the following results. Under mild regularity conditions, any discrete choice model derived from random utility maximization has choice probabilities that can be approximated as ..."
Abstract

Cited by 487 (15 self)
 Add to MetaCart
specification can be tested simply as an omitted variable test with appropriately defined artificial variables. An application to a problem of demand for alternative vehicles shows that MMNL provides a flexible and computationally practical approach to discrete response analysis.
Exact and Approximation Algorithms for Clustering
, 1997
"... In this paper we present a n O(k1�1=d) time algorithm for solving the kcenter problem in R d, under L1 and L2 metrics. The algorithm extends to other metrics, and can be used to solve the discrete kcenter problem, as well. We also describe a simple (1 +)approximation algorithm for the kcenter pr ..."
Abstract

Cited by 79 (6 self)
 Add to MetaCart
In this paper we present a n O(k1�1=d) time algorithm for solving the kcenter problem in R d, under L1 and L2 metrics. The algorithm extends to other metrics, and can be used to solve the discrete kcenter problem, as well. We also describe a simple (1 +)approximation algorithm for the kcenter
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical
Results 1  10
of
28,902