Results 1  10
of
43,415
Shape Indexing Using Approximate NearestNeighbour Search in HighDimensional Spaces
, 1997
"... Shape indexing is a way of making rapid associations between features detected in an image and object models that could have produced them. When model databases are large, the use of highdimensional features is critical, due to the improved level of discrimination they can provide. Unfortunately, f ..."
Abstract

Cited by 311 (12 self)
 Add to MetaCart
, finding the nearest neighbour to a query point rapidly becomes inefficient as the dimensionality of the feature space increases. Past indexing methods have used hash tables for hypothesis recovery, but only in lowdimensional situations. In this paper, we show that a new variant of the kd tree search
On the Surprising Behavior of Distance Metrics in High Dimensional Space
 Lecture Notes in Computer Science
, 2001
"... In recent years, the effect of the curse of high dimensionality has been studied in great detail on several problems such as clustering, nearest neighbor search, and indexing. In high dimensional space the data becomes sparse, and traditional indexing and algorithmic techniques fail from a efficienc ..."
Abstract

Cited by 200 (2 self)
 Add to MetaCart
In recent years, the effect of the curse of high dimensionality has been studied in great detail on several problems such as clustering, nearest neighbor search, and indexing. In high dimensional space the data becomes sparse, and traditional indexing and algorithmic techniques fail from a
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
, 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondenc ..."
Abstract

Cited by 1226 (15 self)
 Add to MetaCart
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing
The Xtree: An index structure for highdimensional data
 In Proceedings of the Int’l Conference on Very Large Data Bases
, 1996
"... In this paper, we propose a new method for indexing large amounts of point and spatial data in highdimensional space. An analysis shows that index structures such as the R*tree are not adequate for indexing highdimensional data sets. The major problem of Rtreebased index structures is the over ..."
Abstract

Cited by 592 (17 self)
 Add to MetaCart
In this paper, we propose a new method for indexing large amounts of point and spatial data in highdimensional space. An analysis shows that index structures such as the R*tree are not adequate for indexing highdimensional data sets. The major problem of Rtreebased index structures
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 852 (10 self)
 Add to MetaCart
The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1277 (120 self)
 Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (=150 MIPS), after learning for relatively short periods of time (a few dozen seconds)
Actions as spacetime shapes
 IN ICCV
, 2005
"... Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes and genera ..."
Abstract

Cited by 651 (4 self)
 Add to MetaCart
Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 783 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Finding Generalized Projected Clusters in High Dimensional Spaces
"... High dimensional data has always been a challenge for clustering algorithms because of the inherent sparsity of the points. Recent research results indicate that in high dimensional data, even the concept of proximity or clustering may not be meaningful. We discuss very general techniques for projec ..."
Abstract

Cited by 194 (8 self)
 Add to MetaCart
High dimensional data has always been a challenge for clustering algorithms because of the inherent sparsity of the points. Recent research results indicate that in high dimensional data, even the concept of proximity or clustering may not be meaningful. We discuss very general techniques
On constructing minimum spanning trees in kdimensional space and related problems
 SIAM JOURNAL ON COMPUTING
, 1982
"... . The problem of finding a minimum spanning tree connecting n points in a kdimensional space is discussed under three common distance metrics: Euclidean, rectilinear, and L. By employing a subroutine that solves the post office problem, we show that, for fixed k _> 3, such a minimum spanning t ..."
Abstract

Cited by 222 (1 self)
 Add to MetaCart
. The problem of finding a minimum spanning tree connecting n points in a kdimensional space is discussed under three common distance metrics: Euclidean, rectilinear, and L. By employing a subroutine that solves the post office problem, we show that, for fixed k _> 3, such a minimum spanning
Results 1  10
of
43,415