Results 1  10
of
5,185,779
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 511 (49 self)
 Add to MetaCart
the intrinsic clustering structure accurately. We introduce a new algorithm for the purpose of cluster analysis which does not produce a clustering of a data set explicitly; but instead creates an augmented ordering of the database representing its densitybased clustering structure. This clusterordering
Memory Consistency and Event Ordering in Scalable SharedMemory Multiprocessors
 In Proceedings of the 17th Annual International Symposium on Computer Architecture
, 1990
"... Scalable sharedmemory multiprocessors distribute memory among the processors and use scalable interconnection networks to provide high bandwidth and low latency communication. In addition, memory accesses are cached, buffered, and pipelined to bridge the gap between the slow shared memory and the f ..."
Abstract

Cited by 735 (18 self)
 Add to MetaCart
and the fast processors. Unless carefully controlled, such architectural optimizations can cause memory accesses to be executed in an order different from what the programmer expects. The set of allowable memory access orderings forms the memory consistency model or event ordering model for an architecture.
A Simple Estimator of Cointegrating Vectors in Higher Order Cointegrated Systems
 ECONOMETRICA
, 1993
"... Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions. T ..."
Abstract

Cited by 507 (3 self)
 Add to MetaCart
Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
 J. COMP. PHYS
, 1981
"... Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution ..."
Abstract

Cited by 959 (2 self)
 Add to MetaCart
are worth striving for. It is shown that these features can be obtained by constructing a matrix with a certain “Property U.” Matrices having this property are exhibited for the equations of steady and unsteady gasdynamics. In order to construct them, it is found helpful to introduce “parameter vectors
UCPOP: A Sound, Complete, Partial Order Planner for ADL
, 1992
"... We describe the ucpop partial order planning algorithm which handles a subset of Pednault's ADL action representation. In particular, ucpop operates with actions that have conditional effects, universally quantified preconditions and effects, and with universally quantified goals. We prove ucpo ..."
Abstract

Cited by 491 (24 self)
 Add to MetaCart
We describe the ucpop partial order planning algorithm which handles a subset of Pednault's ADL action representation. In particular, ucpop operates with actions that have conditional effects, universally quantified preconditions and effects, and with universally quantified goals. We prove
How much should we trust differencesindifferences estimates? Quarterly Journal of Economics 119:249–75
, 2004
"... Most papers that employ DifferencesinDifferences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in statelevel data on fema ..."
Abstract

Cited by 775 (1 self)
 Add to MetaCart
Most papers that employ DifferencesinDifferences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in statelevel data
Measuring individual differences in implicit cognition: The implicit association test
 J PERSONALITY SOCIAL PSYCHOL 74:1464–1480
, 1998
"... An implicit association test (IAT) measures differential association of 2 target concepts with an attribute. The 2 concepts appear in a 2choice task (e.g., flower vs. insect names), and the attribute in a 2nd task (e.g., pleasant vs. unpleasant words for an evaluation attribute). When instructions ..."
Abstract

Cited by 937 (63 self)
 Add to MetaCart
oblige highly associated categories (e.g., flower + pleasant) to share a response key, performance is faster than when less associated categories (e.g., insect + pleasant) share a key. This performance difference implicitly measures differential association of the 2 concepts with the attribute. In 3
The Architecture of Cognition
, 1983
"... Spanning seven orders of magnitude: a challenge for ..."
Abstract

Cited by 1580 (40 self)
 Add to MetaCart
Spanning seven orders of magnitude: a challenge for
Web Server Workload Characterization: The Search for Invariants (Extended Version)
, 1996
"... The phenomenal growth in popularity of the World Wide Web (WWW, or the Web) has made WWW traffic the largest contributor to packet and byte traffic on the NSFNET backbone. This growth has triggered recent research aimed at reducing the volume of network traffic produced by Web clients and servers, b ..."
Abstract

Cited by 470 (6 self)
 Add to MetaCart
are used in this study: three from academic environments, two from scientific research organizations, and one from a commercial Internet provider. These data sets represent three different orders of magnitude in server activity, and two different orders of magnitude in time duration, ranging from one week
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 874 (0 self)
 Add to MetaCart
A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n
Results 1  10
of
5,185,779