Results 1  10
of
3,931
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (23 self)
 Add to MetaCart
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We
Automatically tuned linear algebra software
 CONFERENCE ON HIGH PERFORMANCE NETWORKING AND COMPUTING
, 1998
"... This paper describes an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. The production of such software for machines ranging from desktop workstations to embedded processors can be a tedious and ..."
Abstract

Cited by 478 (26 self)
 Add to MetaCart
and time consuming process. The work described here can help in automating much of this process. We will concentrate our e orts on the widely used linear algebra kernels called the Basic Linear Algebra Subroutines (BLAS). In particular, the work presented here is for general matrix multiply, DGEMM. However
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 653 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Benchmarking GPUs to tune dense linear algebra
, 2008
"... We present performance results for dense linear algebra using recent NVIDIA GPUs. Our matrixmatrix multiply routine (GEMM) runs up to 60 % faster than the vendor’s implementation and approaches the peak of hardware capabilities. Our LU, QR and Cholesky factorizations achieve up to 80–90 % of the pe ..."
Abstract

Cited by 242 (2 self)
 Add to MetaCart
We present performance results for dense linear algebra using recent NVIDIA GPUs. Our matrixmatrix multiply routine (GEMM) runs up to 60 % faster than the vendor’s implementation and approaches the peak of hardware capabilities. Our LU, QR and Cholesky factorizations achieve up to 80
The geometry of algorithms with orthogonality constraints
 SIAM J. MATRIX ANAL. APPL
, 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract

Cited by 640 (1 self)
 Add to MetaCart
processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 723 (18 self)
 Add to MetaCart
processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, etc. Two particular tensor decompositions can be considered to be higherorder extensions of the matrix singular value decompo
sition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum
Linear Algebra Operators for GPU Implementation of Numerical Algorithms
 ACM Transactions on Graphics
, 2003
"... In this work, the emphasis is on the development of strategies to realize techniques of numerical computing on the graphics chip. In particular, the focus is on the acceleration of techniques for solving sets of algebraic equations as they occur in numerical simulation. We introduce a framework for ..."
Abstract

Cited by 324 (9 self)
 Add to MetaCart
for the implementation of linear algebra operators on programmable graphics processors (GPUs), thus providing the building blocks for the design of more complex numerical algorithms. In particular, we propose a stream model for arithmetic operations on vectors and matrices that exploits the intrinsic parallelism
The Determinants of Credit Spread Changes.
 Journal of Finance
, 2001
"... ABSTRACT Using dealer's quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are ..."
Abstract

Cited by 422 (2 self)
 Add to MetaCart
linear interpolation scheme to estimate the entire yield curve. Credit spreads are then defined as the difference between the yield of bondi and the associated yield of the Treasury curve at the same maturity. Treasury Rate Level We use Datastream's monthly series of 10year Benchmark Treasury
A New Efficient Algorithm for Computing Gröbner Bases (F4)
 IN: ISSAC ’02: PROCEEDINGS OF THE 2002 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION
, 2002
"... This paper introduces a new efficient algorithm for computing Gröbner bases. To avoid as much as possible intermediate computation, the algorithm computes successive truncated Gröbner bases and it replaces the classical polynomial reduction found in the Buchberger algorithm by the simultaneous reduc ..."
Abstract

Cited by 365 (57 self)
 Add to MetaCart
reduction of several polynomials. This powerful reduction mechanism is achieved by means of a symbolic precomputation and by extensive use of sparse linear algebra methods. Current techniques in linear algebra used in Computer Algebra are reviewed together with other methods coming from the numerical field
Tiling Imperfectlynested Loop Nests
 In Proc. of SC 2000
, 2000
"... Tiling is one of the more important transformations for enhancing locality of reference in programs. Tiling of perfectlynested loop nests (which are loop nests in which all assignment statements are contained in the innermost loop) is well understood. In practice, most loop nests are imperfectlyne ..."
Abstract

Cited by 39 (0 self)
 Add to MetaCart
for dense numerical linear algebra benchmarks, relaxation codes, and the tomcatv code from the...
Results 1  10
of
3,931