Results 1  10
of
60,338
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision surfaces are found by solving a linearly constrained quadratic programming problem. This optimization problem is challenging because the quadratic form is completely dense and the memory requirements grow with the square of the number of data points. We present a decomposition algorithm that guarantees global optimality, and can be used to train SVM's over very large data sets. The main idea behind the decomposition is the iterative solution of subproblems and the evaluation of optimality conditions which are used both to generate improved iterative values, and also establish the stopping criteria for the algorithm. We present experimental results of our implementation of SVM, and demonstrate the ...
Detection of Abrupt Changes: Theory and Application
 HTTP://PEOPLE.IRISA.FR/MICHELE.BASSEVILLE/KNIGA/
, 1993
"... ..."
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 566 (11 self)
 Add to MetaCart
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theory, cosmology, particle physics, astrophysics and condensed matter physics. No details are given, but references are provided to guide the interested reader to the literature. The present state of knowledge is summarized in a list of 35 key results on topics including the hamiltonian and path integral quantizations, coupling to matter, extensions to supergravity and higher dimensional theories, as well as applications to black holes, cosmology and Plank scale phenomenology. We describe the near term prospects for observational tests of quantum theories of gravity and the expectations that loop quantum gravity may provide predictions for their outcomes. Finally, we provide answers to frequently asked questions and a list of key open problems.
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and the first control in this sequence is applied to the plant. An important advantage of this type of control is its ability to cope with hard constraints on controls and states. It has, therefore, been widely applied in petrochemical and related industries where satisfaction of constraints is particularly important because efficiency demands operating points on or close to the boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both linear and nonlinear and discuss only briefly model predictive control of unconstrained nonlinear and/or timevarying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill from an extensive literature essential principles that ensure stability and use these to present a concise characterization of most of the model predictive controllers that have been proposed in the literature. In some cases the finite horizon optimal control problem solved online is exactly equivalent to the same problem with an infinite horizon; in other cases it is equivalent to a modified infinite horizon optimal control problem. In both situations, known advantages of infinite horizon optimal control accrue.
Wrapper Induction for Information Extraction
, 1997
"... The Internet presents numerous sources of useful informationtelephone directories, product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have been built that automatically gather and manipulate such information on a user's behalf. However, these resources are usually ..."
Abstract

Cited by 612 (30 self)
 Add to MetaCart
The Internet presents numerous sources of useful informationtelephone directories, product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have been built that automatically gather and manipulate such information on a user's behalf. However, these resources are usually formatted for use by people (e.g., the relevant content is embedded in HTML pages), so extracting their content is difficult. Wrappers are often used for this purpose. A wrapper is a procedure for extracting a particular resource's content. Unfortunately, handcoding wrappers is tedious. We introduce wrapper induction, a technique for automatically constructing wrappers. Our techniques can be described in terms of three main contributions. First, we pose the problem of wrapper construction as one of inductive learn...
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning under uncertainty, sensorbased planning, visibility, decisiontheoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.
Practical Issues in Temporal Difference Learning
 Machine Learning
, 1992
"... This paper examines whether temporal difference methods for training connectionist networks, such as Suttons's TD(lambda) algorithm can be successfully applied to complex realworld problems. A number of important practical issues are identified and discussed from a general theoretical perspect ..."
Abstract

Cited by 418 (2 self)
 Add to MetaCart
This paper examines whether temporal difference methods for training connectionist networks, such as Suttons's TD(lambda) algorithm can be successfully applied to complex realworld problems. A number of important practical issues are identified and discussed from a general theoretical perspective. These practical issues are then examined in the context of a case study in which TD(lambda) is applied to learning the game of backgammon from the outcome of selfplay. This is apparently the first application of this algorithm to a complex nontrivial task. It is found that, with zero knowledge built in, the network is able to learn from scratch to play the entire game at a fairly strong intermediate level of performance which is clearly better than conventional commercial programs and which in fact surpasses comparable networks trained on a massive human expert data set. This indicates that TD learning may work better in practice than one would expect based on current theory, and it suggests that further analysis of TD methods, as well as applications in other complex domains may be worth investigating.
Results 1  10
of
60,338