• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,285
Next 10 →

Statistical Comparisons of Classifiers over Multiple Data Sets

by Janez Demsar , 2006
"... While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all but igno ..."
Abstract - Cited by 744 (0 self) - Add to MetaCart
but ignored. This article reviews the current practice and then theoretically and empirically examines several suitable tests. Based on that, we recommend a set of simple, yet safe and robust non-parametric tests for statistical comparisons of classifiers: the Wilcoxon signed ranks test for comparison of two

MULTILISP: a language for concurrent symbolic computation

by Robert H. Halstead - ACM Transactions on Programming Languages and Systems , 1985
"... Multilisp is a version of the Lisp dialect Scheme extended with constructs for parallel execution. Like Scheme, Multilisp is oriented toward symbolic computation. Unlike some parallel programming languages, Multilisp incorporates constructs for causing side effects and for explicitly introducing par ..."
Abstract - Cited by 529 (1 self) - Add to MetaCart
parallelism. The potential complexity of dealing with side effects in a parallel context is mitigated by the nature of the parallelism constructs and by support for abstract data types: a recommended Multilisp programming style is presented which, if followed, should lead to highly parallel, easily

Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation

by Gary King, James Honaker, Anne Joseph, Kenneth Scheve - American Political Science Review , 2000
"... We propose a remedy for the discrepancy between the way political scientists analyze data with missing values and the recommendations of the statistics community. Methodologists and statisticians agree that "multiple imputation" is a superior approach to the problem of missing data scatter ..."
Abstract - Cited by 419 (50 self) - Add to MetaCart
scattered through one's explanatory and dependent variables than the methods currently used in applied data analysis. The reason for this discrepancy lies with the fact that the computational algorithms used to apply the best multiple imputation models have been slow, difficult to implement, impossible

Tag recommendations based on tensor dimensionality reduction

by Panagiotis Symeonidis, Alexandros Nanopoulos, Yannis Manolopoulos - In RecSys ’08: Proc. of the ACM Conference on Recommender systems, 43–50 , 2008
"... Social tagging is the process by which many users add metadata in the form of keywords, to annotate and categorize information items (songs, pictures, web links, products etc.). Collaborative tagging systems recommend tags to users based on what tags other users have used for the same items, aiming ..."
Abstract - Cited by 54 (1 self) - Add to MetaCart
to develop a common consensus about which tags best describe an item. However, they fail to provide appropriate tag recommendations, because: (i) users may have different interests for an information item and (ii) information items may have multiple facets. In contrast to the current tag recommendation

Markov chain monte carlo convergence diagnostics

by Kathryn Cowles, Bradley P. Carlin - JASA , 1996
"... A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to stop sampling and use the samples to estimate characteristics of the distribution of interest. Research into methods of computing theoretical convergence bounds holds promise ..."
Abstract - Cited by 371 (6 self) - Add to MetaCart
for the future but currently has yielded relatively little that is of practical use in applied work. Consequently, most MCMC users address the convergence problem by applying diagnostic tools to the output produced by running their samplers. After giving a brief overview of the area, we provide an expository

Learning Collaborative Information Filters

by Daniel Billsus, Michael J. Pazzani - In Proc. 15th International Conf. on Machine Learning , 1998
"... Predicting items a user would like on the basis of other users’ ratings for these items has become a well-established strategy adopted by many recommendation services on the Internet. Although this can be seen as a classification problem, algo-rithms proposed thus far do not draw on results from the ..."
Abstract - Cited by 354 (4 self) - Add to MetaCart
Predicting items a user would like on the basis of other users’ ratings for these items has become a well-established strategy adopted by many recommendation services on the Internet. Although this can be seen as a classification problem, algo-rithms proposed thus far do not draw on results from

Cutting-Plane Training of Structural SVMs

by Thorsten Joachims, Thomas Finley, Chun-nam John Yu , 2007
"... Discriminative training approaches like structural SVMs have shown much promise for building highly complex and accurate models in areas like natural language processing, protein structure prediction, and information retrieval. However, current training algorithms are computationally expensive or i ..."
Abstract - Cited by 321 (10 self) - Add to MetaCart
Discriminative training approaches like structural SVMs have shown much promise for building highly complex and accurate models in areas like natural language processing, protein structure prediction, and information retrieval. However, current training algorithms are computationally expensive

Tag recommendations in folksonomies

by Robert Jäschke, Ro Marinho, Andreas Hotho, Lars Schmidt-thieme, Gerd Stumme - In PKDD , 2007
"... Abstract. Collaborative tagging systems allow users to assign keywords—so called “tags”—to resources. Tags are used for navigation, finding resources and serendipitous browsing and thus provide an immediate benefit for users. These systems usually include tag recommendation mechanisms easing the pro ..."
Abstract - Cited by 123 (11 self) - Add to MetaCart
the process of finding good tags for a resource, but also consolidating the tag vocabulary across users. In practice, however, only very basic recommendation strategies are applied. In this paper we evaluate and compare two recommendation algorithms on large-scale real life datasets: an adaptation of user

Personalized Recommendation in Social Tagging Systems Using Hierarchical Clustering

by Andriy Shepitsen, Jonathan Gemmell, Bamshad Mobasher, Robin Burke
"... Collaborative tagging applications allow Internet users to annotate resources with personalized tags. The complex network created by many annotations, often called a folksonomy, permits users the freedom to explore tags, resources or even other user’s profiles unbound from a rigid predefined concept ..."
Abstract - Cited by 99 (2 self) - Add to MetaCart
can also be used as the basis for effective personalized recommendation assisting users in navigation. We present a personalization algorithm for recommendation in folksonomies which relies on hierarchical tag clusters. Our basic recommendation framework is independent of the clustering method, but we

Context-aware recommender systems.

by Gediminas Adomavicius , Nikos Manouselis , Youngok Kwon - In Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys ’08, , 2008
"... Abstract This chapter aims to provide an overview of the class of multi-criteria recommender systems. First, it defines the recommendation problem as a multi-criteria decision making (MCDM) problem, and reviews MCDM methods and techniques that can support the implementation of multi-criteria recomm ..."
Abstract - Cited by 162 (29 self) - Add to MetaCart
-criteria recommenders. Then, it focuses on the category of multi-criteria rating recommenders -techniques that provide recommendations by modelling a user's utility for an item as a vector of ratings along several criteria. A review of current algorithms that use multicriteria ratings for calculating predictions
Next 10 →
Results 1 - 10 of 1,285
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University