Results 1 - 10
of
70,773
An experimental comparison of three methods for constructing ensembles of decision trees
- Bagging, boosting, and randomization. Machine Learning
, 2000
"... Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the training data given to a “base ” learning algorithm. Breiman has pointed out that they rely for their effectiveness on the instability of the base learning algorithm. An alternative approac ..."
Abstract
-
Cited by 610 (6 self)
- Add to MetaCart
Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the training data given to a “base ” learning algorithm. Breiman has pointed out that they rely for their effectiveness on the instability of the base learning algorithm. An alternative
Construction of abstract state graphs with PVS
, 1997
"... We describe in this paper a method based on abstract interpretation which, from a theoretical point of view, is similar to the splitting methods proposed in [DGG93, Dam96] but the weaker abstract transition relation we use, allows us to construct automatically abstract state graphs paying a reasonab ..."
Abstract
-
Cited by 742 (10 self)
- Add to MetaCart
We describe in this paper a method based on abstract interpretation which, from a theoretical point of view, is similar to the splitting methods proposed in [DGG93, Dam96] but the weaker abstract transition relation we use, allows us to construct automatically abstract state graphs paying a
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
- IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, error-correcting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract
-
Cited by 585 (13 self)
- Add to MetaCart
the Bethe approximation, and corresponding generalized belief propagation (GBP) algorithms. We emphasize the conditions a free energy approximation must satisfy in order to be a “valid ” or “maxent-normal ” approximation. We describe the relationship between four different methods that can be used
Ensemble Methods in Machine Learning
- MULTIPLE CLASSIFIER SYSTEMS, LBCS-1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boostin ..."
Abstract
-
Cited by 625 (3 self)
- Add to MetaCart
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging
A Bayesian method for the induction of probabilistic networks from data
- MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract
-
Cited by 1400 (31 self)
- Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction
A Comparison of Methods for Multiclass Support Vector Machines
- IEEE TRANS. NEURAL NETWORKS
, 2002
"... Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary class ..."
Abstract
-
Cited by 952 (22 self)
- Add to MetaCart
Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary
Suffix arrays: A new method for on-line string searches
, 1991
"... A new and conceptually simple data structure, called a suffix array, for on-line string searches is intro-duced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees is that ..."
Abstract
-
Cited by 835 (0 self)
- Add to MetaCart
A new and conceptually simple data structure, called a suffix array, for on-line string searches is intro-duced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that employs novel algorithms. The main advantage of suffix arrays over suffix trees
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol 2:2006.0008
, 2006
"... We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosom ..."
Abstract
-
Cited by 714 (7 self)
- Add to MetaCart
We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation
The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems
, 1997
"... This is the fifth paper in a series in which we construct and study the so-called Runge-Kutta Discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms are describ ..."
Abstract
-
Cited by 508 (44 self)
- Add to MetaCart
This is the fifth paper in a series in which we construct and study the so-called Runge-Kutta Discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms
PAUP*: Phylogenetic Analysis Using Parsimony (and other methods) 4.0.b5
, 2001
"... This documentation is currently under construction, therefore, we cannot guarantee the accuracy of the information described herein. A much more user-friendly manual is in progress. Revisions will be made available to registered users over the World Wide Web at ..."
Abstract
-
Cited by 5090 (6 self)
- Add to MetaCart
This documentation is currently under construction, therefore, we cannot guarantee the accuracy of the information described herein. A much more user-friendly manual is in progress. Revisions will be made available to registered users over the World Wide Web at
Results 1 - 10
of
70,773