Results 1  10
of
3,817,381
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12992 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
StrategyProofness and Arrow’s Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions
 J. Econ. Theory
, 1975
"... Consider a committee which must select one alternative from a set of three or more alternatives. Committee members each cast a ballot which the voting procedure counts. The voting procedure is strategyproof if it always induces every committee member to cast a ballot revealing his preference. I pro ..."
Abstract

Cited by 536 (0 self)
 Add to MetaCart
prove three theorems. First, every strategyproof voting procedure is dictatorial. Second, this paper’s strategyproofness condition for voting procedures corresponds to Arrow’s rationality, independence of irrelevant alternatives, nonnegative response, and citizens ’ sovereignty conditions for social
Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models
 Journal of Business and Economic Statistics
, 2002
"... Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled wi ..."
Abstract

Cited by 689 (17 self)
 Add to MetaCart
Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled
Approximation by Superpositions of a Sigmoidal Function
, 1989
"... In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate fun ..."
Abstract

Cited by 1211 (2 self)
 Add to MetaCart
In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate
Performance Analysis of the IEEE 802.11 Distributed Coordination Function
, 2000
"... Recently, the IEEE has standardized the 802.11 protocol for Wireless Local Area Networks. The primary medium access control (MAC) technique of 802.11 is called distributed coordination function (DCF). DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary slott ..."
Abstract

Cited by 1834 (1 self)
 Add to MetaCart
Recently, the IEEE has standardized the 802.11 protocol for Wireless Local Area Networks. The primary medium access control (MAC) technique of 802.11 is called distributed coordination function (DCF). DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary
What energy functions can be minimized via graph cuts?
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract

Cited by 1040 (23 self)
 Add to MetaCart
that can be written as a sum of terms containing three or fewer binary variables. We also provide a generalpurpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who
Selfdetermination theory and the facilitation of intrinsic motivation, social development, and wellbeing
 American Psychologist
, 2000
"... Human beings can be proactive and engaged or, alternatively, passive and alienated, largely as a function of the social conditions in which they develop and function. Accordingly, research guided by selfdetermination theo~ has focused on the socialcontextual conditions that facilitate versus fores ..."
Abstract

Cited by 1489 (35 self)
 Add to MetaCart
Human beings can be proactive and engaged or, alternatively, passive and alienated, largely as a function of the social conditions in which they develop and function. Accordingly, research guided by selfdetermination theo~ has focused on the socialcontextual conditions that facilitate versus
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH ..."
Abstract

Cited by 587 (25 self)
 Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized
A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants
 Learning in Graphical Models
, 1998
"... . The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the d ..."
Abstract

Cited by 984 (18 self)
 Add to MetaCart
. The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect
Convergence Properties of the NelderMead Simplex Method in Low Dimensions
 SIAM Journal of Optimization
, 1998
"... Abstract. The Nelder–Mead simplex algorithm, first published in 1965, is an enormously popular direct search method for multidimensional unconstrained minimization. Despite its widespread use, essentially no theoretical results have been proved explicitly for the Nelder–Mead algorithm. This paper pr ..."
Abstract

Cited by 578 (3 self)
 Add to MetaCart
in two dimensions and a set of initial conditions for which the Nelder–Mead algorithm converges to a nonminimizer. It is not yet known whether the Nelder–Mead method can be proved to converge to a minimizer for a more specialized class of convex functions in two dimensions. Key words. direct search
Results 1  10
of
3,817,381