Results 1  10
of
1,973,920
CONDENSATION  conditional density propagation for visual tracking
, 1998
"... The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses “factored sampling”, previously applied to th ..."
Abstract

Cited by 1493 (12 self)
 Add to MetaCart
The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses “factored sampling”, previously applied
Contour Tracking By Stochastic Propagation of Conditional Density
, 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract

Cited by 652 (22 self)
 Add to MetaCart
Density Propagation over time. It uses `factored sampling', a method previously applied to interpretation of static images, in which the distribution of possible interpretations is represented by a randomly generated set of representatives. The Condensation algorithm combines factored sampling
The Condensation algorithm  Conditional Density Propagation and applications to visual tracking
 Advances in Neural Information Processing Systems
, 1996
"... The power of sampling methods in Bayesian reconstruction of noisy signals is well known. The extension of sampling to temporal problems is discussed. Efficacy of sampling over time is demonstrated with visual tracking. ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
The power of sampling methods in Bayesian reconstruction of noisy signals is well known. The extension of sampling to temporal problems is discussed. Efficacy of sampling over time is demonstrated with visual tracking.
c ○ 1998 Kluwer Academic Publishers. Manufactured in The Netherlands. CONDENSATION—Conditional Density Propagation for Visual Tracking
, 1996
"... Abstract. The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses “factored sampling”, previously appli ..."
Abstract
 Add to MetaCart
Abstract. The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses “factored sampling”, previously
Design of capacityapproaching irregular lowdensity paritycheck codes
 IEEE TRANS. INFORM. THEORY
, 2001
"... We design lowdensity paritycheck (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming that the unde ..."
Abstract

Cited by 577 (6 self)
 Add to MetaCart
to infinity. Furthermore, we prove a stability condition which implies an upper bound on the fraction of errors that a beliefpropagation decoder can correct when applied to a code induced from a bipartite graph with a given degree distribution. Our codes are found by optimizing the degree structure
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
 IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract

Cited by 574 (13 self)
 Add to MetaCart
the Bethe approximation, and corresponding generalized belief propagation (GBP) algorithms. We emphasize the conditions a free energy approximation must satisfy in order to be a “valid ” or “maxentnormal ” approximation. We describe the relationship between four different methods that can be used
Fusion, Propagation, and Structuring in Belief Networks
 ARTIFICIAL INTELLIGENCE
, 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract

Cited by 477 (7 self)
 Add to MetaCart
Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 569 (9 self)
 Add to MetaCart
case of beliefpropagation decoders, we provide an effective algorithm to determine the corresponding capacity to any desired degree of accuracy. The ideas presented in this paper are broadly applicable and extensions of the general method to lowdensity paritycheck codes over larger alphabets, turbo
A Fast Marching Level Set Method for Monotonically Advancing Fronts
 PROC. NAT. ACAD. SCI
, 1995
"... We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential eq ..."
Abstract

Cited by 616 (22 self)
 Add to MetaCart
We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential
Least squares quantization in pcm
 IEEE Transactions on Information Theory
, 1982
"... AbstractIt has long been realized that in pulsecode modulation (PCM), with a given ensemble of signals to handle, the quantum values should be spaced more closely in the voltage regions where the signal amplitude is more likely to fall. It has been shown by Panter and Dite that, in the limit as th ..."
Abstract

Cited by 1342 (0 self)
 Add to MetaCart
as the number of quanta becomes infinite, the asymptotic fractional density of quanta per unit voltage should vary as the onethird power of the probability density per unit voltage of signal amplitudes. In this paper the corresponding result for any finite number of quanta is derived; that is, necessary
Results 1  10
of
1,973,920