Results 1  10
of
7,995
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual CalabiYau manifolds V, W of dimension n (not necessarily equal to 3) one has dim H p (V, Ω q) = dim H n−p (W, Ω q). Physicists conjectured that conformal field theories associated with mirror varieties are equivalent. Mathematically, MS is considered now as a relation between numbers of rational curves on such a manifold and Taylor coefficients of periods of Hodge structures considered as functions on the moduli space of complex structures on a mirror manifold. Recently it has been realized that one can make predictions for numbers of curves of positive genera and also on CalabiYau manifolds of arbitrary dimensions. We will not describe here the complicated history of the subject and will not mention many beautiful contsructions, examples and conjectures motivated
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
A Tutorial on (Co)Algebras and (Co)Induction
 EATCS Bulletin
, 1997
"... . Algebraic structures which are generated by a collection of constructors like natural numbers (generated by a zero and a successor) or finite lists and trees are of wellestablished importance in computer science. Formally, they are initial algebras. Induction is used both as a definition pr ..."
Abstract

Cited by 269 (36 self)
 Add to MetaCart
. Algebraic structures which are generated by a collection of constructors like natural numbers (generated by a zero and a successor) or finite lists and trees are of wellestablished importance in computer science. Formally, they are initial algebras. Induction is used both as a definition
Coalgebraic Logic
 Annals of Pure and Applied Logic
, 1999
"... We present a generalization of modal logic to logical systems which are interpreted on coalgebras of functors on sets. The leading idea is that infinitary modal logic contains characterizing formulas. That is, every modelworld pair is characterized up to bisimulation by an infinitary formula. The ..."
Abstract

Cited by 108 (0 self)
 Add to MetaCart
We present a generalization of modal logic to logical systems which are interpreted on coalgebras of functors on sets. The leading idea is that infinitary modal logic contains characterizing formulas. That is, every modelworld pair is characterized up to bisimulation by an infinitary formula
On Tree Coalgebras and Coalgebra Presentations
"... For deterministic systems, expressed as coalgebras over polynomial functors, every tree t (an element of the final coalgebra) turns out to represent a new coalgebra At. The universal property of these coalgebras, resembling freeness, is that for every state s of every system S there exists a unique ..."
Abstract
 Add to MetaCart
For deterministic systems, expressed as coalgebras over polynomial functors, every tree t (an element of the final coalgebra) turns out to represent a new coalgebra At. The universal property of these coalgebras, resembling freeness, is that for every state s of every system S there exists a unique
Algebras and Coalgebras
 Handbook of Modal Logic
, 2007
"... This chapter 1 sketches some of the mathematical surroundings of modal logic. First, we discuss the algebraic perspective on the field, showing how the theory of universal algebra, and more specifically, that of Boolean algebras with operators, can be used to prove significant results in modal logic ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
logic. In the second and last part of the chapter we describe how modal logic, and its model theory, provides many natural manifestations of the more general theory of universal coalgebra.
Simulations in Coalgebra
 THEOR. COMP. SCI
, 2003
"... A new approach to simulations is proposed within the theory of coalgebras by taking a notion of order on a functor as primitive. Such an order forms a basic building block for a "lax relation lifting", or "relator" as used by other authors. Simulations appear as coalgebras of thi ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
A new approach to simulations is proposed within the theory of coalgebras by taking a notion of order on a functor as primitive. Such an order forms a basic building block for a "lax relation lifting", or "relator" as used by other authors. Simulations appear as coalgebras
Modal Logics are Coalgebraic
, 2008
"... Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large vari ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors ’ firm belief that the systematic exploitation of the coalgebraic nature of modal logic
Coalgebraic Monads
, 2002
"... This paper introduces coalgebraic monads as a unified model of term algebras covering fundamental examples such as initial algebras, final coalgebras, rational terms and term graphs. We develop a general method for obtaining finitary coalgebraic monads which allows us to generalise the notion of rat ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
This paper introduces coalgebraic monads as a unified model of term algebras covering fundamental examples such as initial algebras, final coalgebras, rational terms and term graphs. We develop a general method for obtaining finitary coalgebraic monads which allows us to generalise the notion
Coalgebraic Multigames?
"... Abstract. Coalgebraic games have been recently introduced as a generalization of Conway games and other notions of games arising in different contexts. Using coalgebraic methods, games can be viewed as elements of a final coalgebra for a suitable functor, and operations on games can be analyzed in ..."
Abstract
 Add to MetaCart
in terms of (generalized) coiteration schemata. Coalgebraic games are sequential in nature, i.e. at each step either the Left (L) or the Right (R) player moves (global polarization), moreover only a single move can be performed at each step. Recently, in the context of Game Semantics, concurrent games have
Results 1  10
of
7,995