• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 8,171
Next 10 →

A combined corner and edge detector

by Chris Harris, Mike Stephens - In Proc. of Fourth Alvey Vision Conference , 1988
"... Consistency of image edge filtering is of prime importance for 3D interpretation of image sequences using feature tracking algorithms. To cater for image regions containing texture and isolated features, a combined corner and edge detector based on the local auto-correlation function is utilised, an ..."
Abstract - Cited by 2453 (2 self) - Add to MetaCart
Consistency of image edge filtering is of prime importance for 3D interpretation of image sequences using feature tracking algorithms. To cater for image regions containing texture and isolated features, a combined corner and edge detector based on the local auto-correlation function is utilised

An affine invariant interest point detector

by Krystian Mikolajczyk, Cordelia Schmid - In Proceedings of the 7th European Conference on Computer Vision , 2002
"... Abstract. This paper presents a novel approach for detecting affine invariant interest points. Our method can deal with significant affine transformations including large scale changes. Such transformations introduce significant changes in the point location as well as in the scale and the shape of ..."
Abstract - Cited by 1467 (55 self) - Add to MetaCart
by local extrema of normalized derivatives over scale. 3) An affine-adapted Harris detector determines the location of interest points. A multi-scale version of this detector is used for initialization. An iterative algorithm then modifies location, scale and neighbourhood of each point and converges

Comparing Images Using the Hausdorff Distance

by Daniel P. Huttenlocher, Gregory A. Klanderman, William J. Rucklidge - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1993
"... The Hausdorff distance measures the extent to which each point of a `model' set lies near some point of an `image' set and vice versa. Thus this distance can be used to determine the degree of resemblance between two objects that are superimposed on one another. In this paper we provide ef ..."
Abstract - Cited by 659 (10 self) - Add to MetaCart
(translation and rotation). The Hausdorff distance computation differs from many other shape comparison methods in that no correspondence between the model and the image is derived. The method is quite tolerant of small position errors as occur with edge detectors and other feature extraction methods. Moreover

Learning to detect natural image boundaries using local brightness, color, and texture cues

by David R. Martin, Charless C. Fowlkes, Jitendra Malik - PAMI , 2004
"... The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these fe ..."
Abstract - Cited by 625 (18 self) - Add to MetaCart
these features in an optimal way, we train a classifier using human labeled images as ground truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present precision-recall curves showing that the resulting detector significantly

Detecting Pedestrians Using Patterns of Motion and Appearance

by Paul Viola, Michael J. Jones, Daniel Snow - IN ICCV , 2003
"... This paper describes a pedestrian detection system that integrates image intensity information with motion information. We use a detection style algorithm that scans a detector over two consecutive frames of a video sequence. The detector is trained (using AdaBoost) to take advantage of both moti ..."
Abstract - Cited by 575 (3 self) - Add to MetaCart
This paper describes a pedestrian detection system that integrates image intensity information with motion information. We use a detection style algorithm that scans a detector over two consecutive frames of a video sequence. The detector is trained (using AdaBoost) to take advantage of both

SURF: Speeded Up Robust Features

by Herbert Bay, Tinne Tuytelaars, Luc Van Gool - ECCV
"... Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be comp ..."
Abstract - Cited by 897 (12 self) - Add to MetaCart
be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descrip-tors (in casu, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying

A computational approach to edge detection

by John Canny - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1986
"... This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumpti ..."
Abstract - Cited by 4675 (0 self) - Add to MetaCart
. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals

A PERFORMANCE EVALUATION OF LOCAL DESCRIPTORS

by Krystian Mikolajczyk, Cordelia Schmid , 2005
"... In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their perfo ..."
Abstract - Cited by 1783 (51 self) - Add to MetaCart
their performance depends on the interest region detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to precision and is carried out for different image transformations

Rapid object detection using a boosted cascade of simple features

by Paul Viola, Michael Jones - ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001 , 2001
"... This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the " ..."
Abstract - Cited by 3283 (9 self) - Add to MetaCart
the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers[6]. The third contribution

Object class recognition by unsupervised scale-invariant learning

by R. Fergus, P. Perona, A. Zisserman - In CVPR , 2003
"... We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and ..."
Abstract - Cited by 1127 (50 self) - Add to MetaCart
and relative scale. An entropy-based feature detector is used to select regions and their scale within the image. In learning the parameters of the scale-invariant object model are estimated. This is done using expectation-maximization in a maximum-likelihood setting. In recognition, this model is used in a
Next 10 →
Results 1 - 10 of 8,171
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University