• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 30,339
Next 10 →

Data Mining: An Overview from Database Perspective

by Ming-syan Chen, Jiawei Hun, Philip S. Yu - IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , 1996
"... Mining information and knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Researchers in many different fields have sh ..."
Abstract - Cited by 532 (26 self) - Add to MetaCart
the business opportunities. In response to such a demand, this article is to provide a survey, from a database researcher's point of view, on the data mining techniques developed recently. A classification of the available data mining techniques is provided and a comparative study of such techniques

Data Mining: Concepts and Techniques

by Jiawei Han, Micheline Kamber , 2000
"... Our capabilities of both generating and collecting data have been increasing rapidly in the last several decades. Contributing factors include the widespread use of bar codes for most commercial products, the computerization of many business, scientific and government transactions and managements, a ..."
Abstract - Cited by 3142 (23 self) - Add to MetaCart
of data and information. This explosive growth in stored data has generated an urgent need for new techniques and automated tools that can intelligently assist us in transforming the vast amounts of data into useful information and knowledge. This book explores the concepts and techniques of data mining

Privacy-Preserving Data Mining

by Rakesh Agrawal , Ramakrishnan Srikant , 2000
"... A fruitful direction for future data mining research will be the development of techniques that incorporate privacy concerns. Specifically, we address the following question. Since the primary task in data mining is the development of models about aggregated data, can we develop accurate models with ..."
Abstract - Cited by 844 (3 self) - Add to MetaCart
A fruitful direction for future data mining research will be the development of techniques that incorporate privacy concerns. Specifically, we address the following question. Since the primary task in data mining is the development of models about aggregated data, can we develop accurate models

From Data Mining to Knowledge Discovery in Databases.

by Usama Fayyad , Gregory Piatetsky-Shapiro , Padhraic Smyth - AI Magazine, , 1996
"... ■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in database ..."
Abstract - Cited by 538 (0 self) - Add to MetaCart
in databases are related both to each other and to related fields, such as machine learning, statistics, and databases. The article mentions particular real-world applications, specific data-mining techniques, challenges involved in real-world applications of knowledge discovery, and current and future

Opinion Mining and Sentiment Analysis

by Bo Pang, Lillian Lee , 2008
"... An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do, active ..."
Abstract - Cited by 749 (3 self) - Add to MetaCart
An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do

Mining the Network Value of Customers

by Pedro Domingos, Matt Richardson - In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining , 2002
"... One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected pro t from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only ..."
Abstract - Cited by 568 (11 self) - Add to MetaCart
|can be extremely eective, but is still a black art. Our work can be viewed as a step towards providing a more solid foundation for it, taking advantage of the availability of large relevant databases. Categories and Subject Descriptors H.2.8 [Database Management]: Database Applications| data mining

Data Preparation for Mining World Wide Web Browsing Patterns

by Robert Cooley, Bamshad Mobasher, Jaideep Srivastava - KNOWLEDGE AND INFORMATION SYSTEMS , 1999
"... The World Wide Web (WWW) continues to grow at an astounding rate in both the sheer volume of tra#c and the size and complexity of Web sites. The complexity of tasks such as Web site design, Web server design, and of simply navigating through a Web site have increased along with this growth. An i ..."
Abstract - Cited by 567 (43 self) - Add to MetaCart
is the application of data mining techniques to usage logs of large Web data repositories in order to produce results that can be used in the design tasks mentioned above. However, there are several preprocessing tasks that must be performed prior to applying data mining algorithms to the data collected from

Survey of clustering data mining techniques

by Pavel Berkhin , 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract - Cited by 408 (0 self) - Add to MetaCart
in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining

Mining Association Rules between Sets of Items in Large Databases

by Rakesh Agrawal, Tomasz Imielinski, Arun Swami - IN: PROCEEDINGS OF THE 1993 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, WASHINGTON DC (USA , 1993
"... We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel esti ..."
Abstract - Cited by 3331 (16 self) - Add to MetaCart
estimation and pruning techniques. We also present results of applying this algorithm to sales data obtained from a large retailing company, which shows the effectiveness of the algorithm.

MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS

by Yehuda Koren, Robert Bell, Chris Volinsky - IEEE COMPUTER , 2009
"... As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest-neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit feedback, temporal effects, and confidence levels. Modern co ..."
Abstract - Cited by 593 (4 self) - Add to MetaCart
have proven willing to indicate their level of satisfaction with particular movies, so a huge volume of data is available about which movies appeal to which customers. Companies can analyze this data to recommend movies to particular customers. Recommender system strategies Broadly speaking
Next 10 →
Results 1 - 10 of 30,339
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University