Results 1  10
of
1,860,578
Improved cardinality bounds on the auxiliary random variables in Marton’s inner bound
"... Abstract—Marton’s region is the best known inner bound for a general discrete memoryless broadcast channel. We establish improved bounds on the cardinalities of the auxiliary random variables. We combine the perturbation technique along with a representation using concave envelopes to achieve this i ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract—Marton’s region is the best known inner bound for a general discrete memoryless broadcast channel. We establish improved bounds on the cardinalities of the auxiliary random variables. We combine the perturbation technique along with a representation using concave envelopes to achieve
The ratedistortion function for source coding with side information at the decoder
 IEEE Trans. Inform. Theory
, 1976
"... AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract

Cited by 1055 (1 self)
 Add to MetaCart
the infimum is with respect to all auxiliary random variables Z (which take values in a finite set 3) that satisfy: i) Y,Z conditiofally independent given X; ii) there exists a functionf: “Y x E +.%, such that E[D(X,f(Y,Z))] 5 d. Let Rx, y(d) be the ratedistortion function which results when the encoder
An introduction to variable and feature selection
 Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract

Cited by 1283 (16 self)
 Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES
, 1962
"... Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr(SES> nt) depend only on the endpoints of the ranges of the s ..."
Abstract

Cited by 2217 (2 self)
 Add to MetaCart
Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr(SES> nt) depend only on the endpoints of the ranges
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 664 (14 self)
 Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing
Random forests
 Machine Learning
, 2001
"... Abstract. Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the fo ..."
Abstract

Cited by 3433 (2 self)
 Add to MetaCart
Abstract. Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees
DART: Directed automated random testing
 In Programming Language Design and Implementation (PLDI
, 2005
"... We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static sourcecode parsing; (2) automatic generation of a test driver for this interface that performs ..."
Abstract

Cited by 823 (41 self)
 Add to MetaCart
that performs random testing to simulate the most general environment the program can operate in; and (3) dynamic analysis of how the program behaves under random testing and automatic generation of new test inputs to direct systematically the execution along alternative program paths. Together, these three
Results 1  10
of
1,860,578