• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 50,529
Next 10 →

APLA: Indexing Arbitrary Probability Distributions

by unknown authors
"... The ability to store and query uncertain information is of great benefit to databases that infer values from a set of observations, including databases of moving objects, sensor readings, historical business transactions, and biomedical images. These observations are often inexact to begin with, and ..."
Abstract - Add to MetaCart
, and even if they are exact, a set of observations of an attribute of an object is better represented by a probability distribution than by a single number, such as a mean. In this paper, we present adaptive, piecewise-linear approximations (APLAs), which represent arbitrary probability distributions

Querying Objects modeled by Arbitrary Probability Distributions

by Christian Böhm, Peter Kunath, Alexey Pryakhin, Matthias Schubert
"... Abstract. In many modern applications such as biometric identification systems, sensor networks, medical imaging, geology, and multimedia databases, the data objects are not described exactly. Therefore, recent solutions propose to model data objects by probability density functions(pdf). Since a pd ..."
Abstract - Cited by 2 (0 self) - Add to MetaCart
Abstract. In many modern applications such as biometric identification systems, sensor networks, medical imaging, geology, and multimedia databases, the data objects are not described exactly. Therefore, recent solutions propose to model data objects by probability density functions(pdf). Since a

Variables and Vectors With Arbitrary Probability Distribution Laws

by Victor M. Bogdan, Victor M. Bogdan, Lyizdoiz B. Johizsoiz, Space Ceiztec , 1981
"... c. 1 ..."
Abstract - Add to MetaCart
Abstract not found

Approximating discrete probability distributions with dependence trees

by C. K. Chow, C. N. Liu - IEEE TRANSACTIONS ON INFORMATION THEORY , 1968
"... A method is presented to approximate optimally an n-dimensional discrete probability distribution by a product of second-order distributions, or the distribution of the first-order tree dependence. The problem is to find an optimum set of n-1 first order dependence relationship among the n variables ..."
Abstract - Cited by 881 (0 self) - Add to MetaCart
A method is presented to approximate optimally an n-dimensional discrete probability distribution by a product of second-order distributions, or the distribution of the first-order tree dependence. The problem is to find an optimum set of n-1 first order dependence relationship among the n

Dynamic Bayesian Networks: Representation, Inference and Learning

by Kevin Patrick Murphy , 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract - Cited by 770 (3 self) - Add to MetaCart
random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from

Distributional Clustering Of English Words

by Fernando Pereira, Naftali Tishby, Lillian Lee - In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics , 1993
"... We describe and evaluate experimentally a method for clustering words according to their dis- tribution in particular syntactic contexts. Words are represented by the relative frequency distributions of contexts in which they appear, and relative entropy between those distributions is used as the si ..."
Abstract - Cited by 629 (27 self) - Add to MetaCart
as the similarity measure for clustering. Clusters are represented by average context distributions derived from the given words according to their probabilities of cluster membership. In many cases, the clusters can be thought of as encoding coarse sense distinctions. Deterministic annealing is used to find lowest

Estimating the Support of a High-Dimensional Distribution

by Bernhard Schölkopf, John C. Platt, John Shawe-taylor, Alex J. Smola, Robert C. Williamson , 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract - Cited by 783 (29 self) - Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We

Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.

by Stuart Geman , Donald Geman - IEEE Trans. Pattern Anal. Mach. Intell. , 1984
"... Abstract-We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs di ..."
Abstract - Cited by 5126 (1 self) - Add to MetaCart
system isolates low energy states ("annealing"), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result

Establishing Pairwise Keys in Distributed Sensor Networks

by Donggang Liu, Peng Ning , 2003
"... Pairwise key establishment is a fundamental security service in sensor networks; it enables sensor nodes to communicate securely with each other using cryptographic techniques. However, due to the resource constraints on sensors, it is infeasible to use traditional key management techniques such as ..."
Abstract - Cited by 543 (29 self) - Add to MetaCart
such as public key cryptography and key distribution center (KDC). To facilitate the study of novel pairwise key predistribution techniques, this paper presents a general framework for establishing pairwise keys between sensors on the basis of a polynomial-based key predistribution protocol [2]. This paper

A Pairwise Key Pre-Distribution Scheme for Wireless Sensor Networks

by Wenliang Du, Jing Deng, Yunghsiang S. Han, Pramod K. Varshney, Jonathan Katz, Aram Khalili , 2003
"... this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a new key pre-distribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an in-depth analysis of our scheme in terms of network resili ..."
Abstract - Cited by 552 (18 self) - Add to MetaCart
this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a new key pre-distribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an in-depth analysis of our scheme in terms of network
Next 10 →
Results 1 - 10 of 50,529
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University