Results 1  10
of
30,542
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 881 (0 self)
 Add to MetaCart
variables. It is shown that the procedure derived in this paper yields an approximation of a minimum difference in information. It is further shown that when this procedure is applied to empirical observations from an unknown distribution of tree dependence, the procedure is the maximumlikelihood estimate
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract

Cited by 647 (82 self)
 Add to MetaCart
phase. The best overall solution is kept as the result. In this chapter, we first describe the basic components of GRASP. Successful implementation techniques and parameter tuning strategies are discussed and illustrated by numerical results obtained for different applications. Enhanced or alternative
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 1000 (13 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Finite state Markovchain approximations to univariate and vector autoregressions
 Economics Letters
, 1986
"... The paper develops a procedure for finding a discretevalued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1. ..."
Abstract

Cited by 493 (0 self)
 Add to MetaCart
The paper develops a procedure for finding a discretevalued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1.
Variational algorithms for approximate Bayesian inference
, 2003
"... The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents ..."
Abstract

Cited by 440 (9 self)
 Add to MetaCart
The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents
StrategyProofness and Arrow’s Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions
 J. Econ. Theory
, 1975
"... Consider a committee which must select one alternative from a set of three or more alternatives. Committee members each cast a ballot which the voting procedure counts. The voting procedure is strategyproof if it always induces every committee member to cast a ballot revealing his preference. I pro ..."
Abstract

Cited by 553 (0 self)
 Add to MetaCart
Consider a committee which must select one alternative from a set of three or more alternatives. Committee members each cast a ballot which the voting procedure counts. The voting procedure is strategyproof if it always induces every committee member to cast a ballot revealing his preference. I
Stochastic volatility: likelihood inference and comparison with ARCH models
 Review of Economic Studies
, 1998
"... In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihoodbased framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offse ..."
Abstract

Cited by 592 (40 self)
 Add to MetaCart
offset mixture model, followed by an importance reweighting procedure. This approach is compared with several alternative methods using real data. The paper also develops simulationbased methods for filtering, likelihood evaluation and model failure diagnostics. The issue of model choice using non
Policy gradient methods for reinforcement learning with function approximation.
 In NIPS,
, 1999
"... Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly repres ..."
Abstract

Cited by 439 (20 self)
 Add to MetaCart
Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly
The algorithmic analysis of hybrid systems
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract

Cited by 778 (71 self)
 Add to MetaCart
also present approximation techniques for dealing with systems for which the iterative procedures do not converge.
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract

Cited by 679 (10 self)
 Add to MetaCart
For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative
Results 1  10
of
30,542