• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 28,781
Next 10 →

Wattch: A Framework for Architectural-Level Power Analysis and Optimizations

by David Brooks, Vivek Tiwari, Margaret Martonosi - In Proceedings of the 27th Annual International Symposium on Computer Architecture , 2000
"... Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve high ..."
Abstract - Cited by 1320 (43 self) - Add to MetaCart
high accuracy by calculating power estimates for designs only after layout or floorplanning are complete In addition to being available only late in the design process, such tools are often quite slow, which compounds the difficulty of running them for a large space of design possibilities.

Greedy Function Approximation: A Gradient Boosting Machine

by Jerome H. Friedman - Annals of Statistics , 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract - Cited by 1000 (13 self) - Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed

Maximum Likelihood Linear Transformations for HMM-Based Speech Recognition

by M.J.F. Gales - COMPUTER SPEECH AND LANGUAGE , 1998
"... This paper examines the application of linear transformations for speaker and environmental adaptation in an HMM-based speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple bias ..."
Abstract - Cited by 570 (68 self) - Add to MetaCart
transforms on a large vocabulary speech recognition task using incremental adaptation is investigated. In addition, initial experiments using the constrained model-space transform for speaker adaptive training are detailed.

Online Learning with Kernels

by Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson , 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the so-called kernel trick with the large margin idea. There has been little u ..."
Abstract - Cited by 2831 (123 self) - Add to MetaCart
use of these methods in an online setting suitable for real-time applications. In this paper we consider online learning in a Reproducing Kernel Hilbert Space. By considering classical stochastic gradient descent within a feature space, and the use of some straightforward tricks, we develop simple

Plenoptic Modeling: An Image-Based Rendering System

by Leonard McMillan, Gary Bishop , 1995
"... Image-based rendering is a powerful new approach for generating real-time photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for image-based ..."
Abstract - Cited by 760 (20 self) - Add to MetaCart
-based rendering paradigms, such as morphing and view interpolation. The plenoptic function is a parameterized function for describing everything that is visible from a given point in space. We present an image-based rendering system based on sampling, reconstructing, and resampling the plenoptic function

Real-Time Obstacle Avoidance for Manipulators and Mobile Robots

by Oussama Khatib - INT. JOUR OF ROBOTIC RESEARCH , 1986
"... This paper presents a unique real-time obstacle avoidance approach for manipulators and mobile robots based on the artificial potential field concept. Collision avoidance, tradi-tionally considered a high level planning problem, can be effectively distributed between different levels of control, al- ..."
Abstract - Cited by 1345 (28 self) - Add to MetaCart
-matic transformation. Outside the obstacles ’ regions of influ-ence, we caused the end effector to move in a straight line with an upper speed limit. The artificial potential field ap-proach has been extended to collision avoidance for all ma-nipulator links. In addition, a joint space artificial potential field

Fast and accurate short read alignment with Burrows-Wheeler transform

by Heng Li, Richard Durbin - BIOINFORMATICS, 2009, ADVANCE ACCESS , 2009
"... Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hashtable based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to a ..."
Abstract - Cited by 2096 (24 self) - Add to MetaCart
reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20X faster than MAQ while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM format. Variant calling

An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions

by Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, Angela Y. Wu - ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS , 1994
"... Consider a set S of n data points in real d-dimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract - Cited by 984 (32 self) - Add to MetaCart
Consider a set S of n data points in real d-dimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any

The X-tree: An index structure for high-dimensional data

by Stefan Berchtold, Daniel A. Keim, Hans-peter Kriegel - In Proceedings of the Int’l Conference on Very Large Data Bases , 1996
"... In this paper, we propose a new method for index-ing large amounts of point and spatial data in high-dimensional space. An analysis shows that index structures such as the R*-tree are not adequate for indexing high-dimensional data sets. The major problem of R-tree-based index structures is the over ..."
Abstract - Cited by 592 (17 self) - Add to MetaCart
In this paper, we propose a new method for index-ing large amounts of point and spatial data in high-dimensional space. An analysis shows that index structures such as the R*-tree are not adequate for indexing high-dimensional data sets. The major problem of R-tree-based index structures

Determining Optical Flow

by Berthold K. P. Horn, Brian G. Schunck - ARTIFICIAL INTELLIGENCE , 1981
"... Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent veloc ..."
Abstract - Cited by 2404 (9 self) - Add to MetaCart
in space and time. It is also insensitive to quantization of brightness levels and additive noise. Examples are included where the assumption of smoothness is violated at singular points or along lines in the image.
Next 10 →
Results 1 - 10 of 28,781
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University