Results 1  10
of
184,281
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the twoclass problem, boosting can
The strength of weak learnability
 Machine Learning
, 1990
"... Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with h ..."
Abstract

Cited by 861 (24 self)
 Add to MetaCart
Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Inside the black box: Raising standards through classroom assessment
 Phi Delta Kappan
, 1998
"... Raising the standards of learning that are achieved through school education is an important national priority. Governments have been vigorous in the last ten years in making changes in pursuit of this aim. National curriculum testing, the development of the GCSE, league tables of school performance ..."
Abstract

Cited by 533 (7 self)
 Add to MetaCart
in classrooms. Here, teachers have to manage complicated and demanding situations, channelling the personal, emotional and social pressures amongst a group of 30 or so youngsters in order to help them to learn now, and to become better learners in the future. Standards can only be raised if teachers can tackle
Digital GameBased Learning
"... [Green and Bavelier, 2003] has grabbed national attention for suggesting that playing “action ” video and computer games has the positive effect of enhancing students ’ visual selective attention. But that finding is just one small part of a more important message that all parents and educators need ..."
Abstract

Cited by 519 (0 self)
 Add to MetaCart
[Green and Bavelier, 2003] has grabbed national attention for suggesting that playing “action ” video and computer games has the positive effect of enhancing students ’ visual selective attention. But that finding is just one small part of a more important message that all parents and educators need to hear: Video games are not the enemy, but the best opportunity we have to engage our kids in real learning.
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 707 (18 self)
 Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experiment, we used the algorithm to combine different WWW search strategies, each of which is a query expansion for a given domain. For this task, we compare the performance of RankBoost to the individual search strategies. The second experiment is a collaborativefiltering task for making movie recommendations. Here, we present results comparing RankBoost to nearestneighbor and regression algorithms.
A DecisionTheoretic Generalization of onLine Learning and an Application to Boosting
, 1996
"... ..."
Experiments with a New Boosting Algorithm
, 1996
"... In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the relate ..."
Abstract

Cited by 2176 (21 self)
 Add to MetaCart
In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the related notion of a “pseudoloss ” which is a method for forcing a learning algorithm of multilabel conceptsto concentrate on the labels that are hardest to discriminate. In this paper, we describe experiments we carried out to assess how well AdaBoost with and without pseudoloss, performs on real learning problems. We performed two sets of experiments. The first set compared boosting to Breiman’s “bagging ” method when used to aggregate various classifiers (including decision trees and single attributevalue tests). We compared the performance of the two methods on a collection of machinelearning benchmarks. In the second set of experiments, we studied in more detail the performance of boosting using a nearestneighbor classifier on an OCR problem.
Results 1  10
of
184,281