• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 184,072
Next 10 →

The Nature of Statistical Learning Theory

by Vladimir N. Vapnik , 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract - Cited by 13236 (32 self) - Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based

On understanding types, data abstraction, and polymorphism

by Luca Cardelli, Peter Wegner - ACM COMPUTING SURVEYS , 1985
"... Our objective is to understand the notion of type in programming languages, present a model of typed, polymorphic programming languages that reflects recent research in type theory, and examine the relevance of recent research to the design of practical programming languages. Object-oriented languag ..."
Abstract - Cited by 845 (13 self) - Add to MetaCart
by universal quantification to model generic functions with type parameters, existential quantification and packaging (information hiding) to model abstract data types, and

An integrative theory of prefrontal cortex function.

by Earl K Miller , Jonathan D Cohen - Annual Review of Neuroscience, , 2001
"... Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active ..."
Abstract - Cited by 1093 (20 self) - Add to MetaCart
Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from

The rate-distortion function for source coding with side information at the decoder

by Aaron D. Wyner, Jacob Ziv - IEEE Trans. Inform. Theory , 1976
"... Abstract-Let {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract - Cited by 1060 (1 self) - Add to MetaCart
Abstract-Let {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a

A model for technical inefficiency effects in a stochastic frontier production function for panel data

by G. E. Battese - Empirical Economics , 1995
"... Abstract: A stochastic frontier production function is defined for panel data on firms, in which the non-negative technical inetGciency effects are assumed to be a function of firm-specific variables and time. The inefficiency effects are assumed to be independently distributed as truncations of nor ..."
Abstract - Cited by 555 (4 self) - Add to MetaCart
Abstract: A stochastic frontier production function is defined for panel data on firms, in which the non-negative technical inetGciency effects are assumed to be a function of firm-specific variables and time. The inefficiency effects are assumed to be independently distributed as truncations

The Byzantine Generals Problem,"

by L Lamport - ACM Transactions on Programming Languages and Systems, , 1982
"... Abstract The Byzantine Generals Problem requires processes to reach agreement upon a value even though some of them may fad. It is weakened by allowing them to agree upon an "incorrect" value if a failure occurs. The transaction eormmt problem for a distributed database Js a special case ..."
Abstract - Cited by 1561 (6 self) - Add to MetaCart
Abstract The Byzantine Generals Problem requires processes to reach agreement upon a value even though some of them may fad. It is weakened by allowing them to agree upon an "incorrect" value if a failure occurs. The transaction eormmt problem for a distributed database Js a special case

Term Rewriting Systems

by J. W. Klop , 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstra ..."
Abstract - Cited by 610 (18 self) - Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss

Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm

by Nick Littlestone - Machine Learning , 1988
"... learning Boolean functions, linear-threshold algorithms Abstract. Valiant (1984) and others have studied the problem of learning various classes of Boolean functions from examples. Here we discuss incremental learning of these functions. We consider a setting in which the learner responds to each ex ..."
Abstract - Cited by 773 (5 self) - Add to MetaCart
learning Boolean functions, linear-threshold algorithms Abstract. Valiant (1984) and others have studied the problem of learning various classes of Boolean functions from examples. Here we discuss incremental learning of these functions. We consider a setting in which the learner responds to each

Cluster analysis and display of genome-wide expression patterns’,

by Michael B Eisen , Paul T Spellman , Patrick O Brown , David Botstein - Proc. Natl. Acad. , 1998
"... ABSTRACT A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and th ..."
Abstract - Cited by 2895 (44 self) - Add to MetaCart
ABSTRACT A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering

Dynamic Conditional Correlation: A simple class of multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.

by Robert Engle - Journal of Business & Economic Statistics , 2002
"... Abstract Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models ..."
Abstract - Cited by 711 (17 self) - Add to MetaCart
Abstract Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models
Next 10 →
Results 1 - 10 of 184,072
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University