Results 1  10
of
2,028,383
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Induction of Decision Trees
 MACH. LEARN
, 1986
"... The technology for building knowledgebased systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such syste ..."
Abstract

Cited by 4303 (4 self)
 Add to MetaCart
The technology for building knowledgebased systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
Generation and Synchronous TreeAdjoining Grammars
, 1990
"... Treeadjoining grammars (TAG) have been proposed as a formalism for generation based on the intuition that the extended domain of syntactic locality that TAGs provide should aid in localizing semantic dependencies as well, in turn serving as an aid to generation from semantic representations. We dem ..."
Abstract

Cited by 772 (43 self)
 Add to MetaCart
Treeadjoining grammars (TAG) have been proposed as a formalism for generation based on the intuition that the extended domain of syntactic locality that TAGs provide should aid in localizing semantic dependencies as well, in turn serving as an aid to generation from semantic representations. We
Scalable Recognition with a Vocabulary Tree
 IN CVPR
, 2006
"... A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CDcovers from a database of 40000 images of popular music CD's. The scheme ..."
Abstract

Cited by 1043 (0 self)
 Add to MetaCart
A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CDcovers from a database of 40000 images of popular music CD's. The scheme
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 874 (0 self)
 Add to MetaCart
variables. It is shown that the procedure derived in this paper yields an approximation of a minimum difference in information. It is further shown that when this procedure is applied to empirical observations from an unknown distribution of tree dependence, the procedure is the maximumlikelihood estimate
Termweighting approaches in automatic text retrieval
 INFORMATION PROCESSING AND MANAGEMENT
, 1988
"... The experimental evidence accumulated over the past 20 years indicates that text indexing systems based on the assignment of appropriately weighted single terms produce retrieval results that are superior to those obtainable with other more elaborate text representations. These results depend crucia ..."
Abstract

Cited by 2159 (10 self)
 Add to MetaCart
The experimental evidence accumulated over the past 20 years indicates that text indexing systems based on the assignment of appropriately weighted single terms produce retrieval results that are superior to those obtainable with other more elaborate text representations. These results depend
Fast texture synthesis using treestructured vector quantization
, 2000
"... Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given ..."
Abstract

Cited by 562 (12 self)
 Add to MetaCart
, but runs two orders of magnitude faster. This permits us to apply texture synthesis to problems where it has traditionally been considered impractical. In particular, we have applied it to constrained synthesis for image editing and temporal texture generation. Our algorithm is derived from Markov Random
Probabilistic PartofSpeech Tagging Using Decision Trees
, 1994
"... In this paper, a new probabilistic tagging method is presented which avoids problems that Markov Model based taggers face, when they have to estimate transition probabilities from sparse data. In this tagging method, transition probabilities are estimated using a decision tree. Based on this method, ..."
Abstract

Cited by 1009 (9 self)
 Add to MetaCart
In this paper, a new probabilistic tagging method is presented which avoids problems that Markov Model based taggers face, when they have to estimate transition probabilities from sparse data. In this tagging method, transition probabilities are estimated using a decision tree. Based on this method
A distributed algorithm for minimumweight spanning trees
, 1983
"... A distributed algorithm is presented that constructs he minimumweight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm and exchange ..."
Abstract

Cited by 443 (3 self)
 Add to MetaCart
A distributed algorithm is presented that constructs he minimumweight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm
Results 1  10
of
2,028,383