Results 1  10
of
6,689
Weak Random Sources, Hitting Sets, and BPP Simulations
, 1998
"... We show how to simulate any BPP algorithm in polynomial time using a weak random source of r bits and minentropy r fl for any fl ? 0. This follows from a more general result about sampling with weak random sources. Our result matches an informationtheoretic lower bound and solves a question that ..."
Abstract

Cited by 45 (5 self)
 Add to MetaCart
We show how to simulate any BPP algorithm in polynomial time using a weak random source of r bits and minentropy r fl for any fl ? 0. This follows from a more general result about sampling with weak random sources. Our result matches an informationtheoretic lower bound and solves a question
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Simulating BPP Using a General Weak Random Source
 ALGORITHMICA
, 1996
"... We show how to simulate BPP and approximation algorithms in polynomial time using the output from a ffisource. A ffisource is a weak random source that is asked only once for R bits, and must output an Rbit string according to some distribution that places probability no more than 2 \GammaffiR on ..."
Abstract

Cited by 122 (17 self)
 Add to MetaCart
We show how to simulate BPP and approximation algorithms in polynomial time using the output from a ffisource. A ffisource is a weak random source that is asked only once for R bits, and must output an Rbit string according to some distribution that places probability no more than 2 \Gammaffi
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1643 (75 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2837 (11 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
Strengths and Weaknesses of quantum computing
 SIAM JOURNAL OF COMPUTATION
, 1997
"... Recently a great deal of attention has been focused on quantum computation following a ..."
Abstract

Cited by 386 (10 self)
 Add to MetaCart
Recently a great deal of attention has been focused on quantum computation following a
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining the problem and its relevance, its statistical behavior, its history and current developments, and the central ideas of the algorithms and their complexities. We present a number of experiments to compare the performance of the different algorithms and show which are the best choices according to each case. We conclude with some future work directions and open problems.
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract

Cited by 850 (0 self)
 Add to MetaCart
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplitudes you told me about, they’re so complicated and absurd, what makes you think those are right? Maybe they aren’t right. ’ Such remarks are obvious and are perfectly clear to anybody who is working on this problem. It does not do any good to point this out.” —Richard Feynman [1, p.161]
Error Control and Concealment for Video Communication  A Review
 PROCEEDINGS OF THE IEEE
, 1998
"... The problem of error control and concealment in video communication is becoming increasingly important because of the growing interest in video delivery over unreliable channels such as wireless networks and the Internet. This paper reviews the techniques that have been developed for error control a ..."
Abstract

Cited by 436 (13 self)
 Add to MetaCart
and concealment in the past ten to fifteen years. These techniques are described in three categories according to the roles that the encoder and decoder play in the underlying approaches. Forward error concealment includes methods that add redundancy at the source end to enhance error resilience of the coded bit
Results 1  10
of
6,689