Results 1  10
of
3,679
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Adaptive Wavelet Thresholding for Image Denoising and Compression
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2000
"... The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing ..."
Abstract

Cited by 351 (4 self)
 Add to MetaCart
The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing
Minimax Estimation via Wavelet Shrinkage
, 1992
"... We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minim ..."
Abstract

Cited by 322 (32 self)
 Add to MetaCart
We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly
An EM Algorithm for WaveletBased Image Restoration
, 2002
"... This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking a ..."
Abstract

Cited by 351 (23 self)
 Add to MetaCart
process requiring O(N log N) operations per iteration. Thus, it is the rst image restoration algorithm that optimizes a waveletbased penalized likelihood criterion and has computational complexity comparable to that of standard wavelet denoising or frequency domain deconvolution methods. The convergence
Bivariate Shrinkage Functions for WaveletBased Denoising Exploiting Interscale Dependency
, 2002
"... Most simple nonlinear thresholding rules for waveletbased denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents i ..."
Abstract

Cited by 202 (8 self)
 Add to MetaCart
Most simple nonlinear thresholding rules for waveletbased denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 930 (41 self)
 Add to MetaCart
is flexible and can work with any pursuit method (e.g., basis pursuit, FOCUSS, or matching pursuit). We analyze this algorithm and demonstrate its results both on synthetic tests and in applications on real image data.
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes
Wireless Communications
, 2005
"... Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University ..."
Abstract

Cited by 1129 (32 self)
 Add to MetaCart
Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
sparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems
Results 1  10
of
3,679