Results 1  10
of
98,522
WIGM: Discovery of Subgraph Patterns in a Large Weighted Graph
"... Many research areas have begun representing massive data sets as very large graphs. Thus, graph mining has been an active research area in recent years. Most of the graph mining research focuses on mining unweighted graphs. However, weighted graphs are actually more common. The weight on an edge may ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
is to find these patterns in a large weighted graph. Two related problems are studied in this paper: (1) discovering all patterns with respect to a given minimum weight threshold and (2) finding k patterns with the highest weights. The weighted subgraph patterns do not possess the antimonotonic property
Frequent Subgraph Discovery
, 2001
"... Over the years, frequent itemset discovery algorithms have been used to solve various interesting problems. As data mining techniques are being increasingly applied to nontraditional domains, existing approaches for finding frequent itemsets cannot be used as they cannot model the requirement of th ..."
Abstract

Cited by 407 (14 self)
 Add to MetaCart
of these domains. An alternate way of modeling the objects in these data sets, is to use a graph to model the database objects. Within that model, the problem of finding frequent patterns becomes that of discovering subgraphs that occur frequently over the entire set of graphs. In this paper we present a
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
From data mining to knowledge discovery in databases
 AI Magazine
, 1996
"... ■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases ..."
Abstract

Cited by 510 (0 self)
 Add to MetaCart
■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery
Focused crawling: a new approach to topicspecific Web resource discovery
, 1999
"... The rapid growth of the WorldWide Web poses unprecedented scaling challenges for generalpurpose crawlers and search engines. In this paper we describe a new hypertext resource discovery system called a Focused Crawler. The goal of a focused crawler is to selectively seek out pages that are relevan ..."
Abstract

Cited by 628 (10 self)
 Add to MetaCart
The rapid growth of the WorldWide Web poses unprecedented scaling challenges for generalpurpose crawlers and search engines. In this paper we describe a new hypertext resource discovery system called a Focused Crawler. The goal of a focused crawler is to selectively seek out pages
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
Functional discovery via a compendium of expression profiles. Cell 102:109
, 2000
"... have been devised to survey gene functions en masse either computationally (Marcotte et al., 1999) or experimentally; among these, highly parallel assays of ..."
Abstract

Cited by 537 (8 self)
 Add to MetaCart
have been devised to survey gene functions en masse either computationally (Marcotte et al., 1999) or experimentally; among these, highly parallel assays of
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Results 1  10
of
98,522