Results 1  10
of
6,175,502
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard problems occur at a critical value of such a parameter. This critical value separates two regions of characteristically different properties. For example, for Kcolorability, the critical value separates overconstrained from underconstrained random graphs, and it marks the value at which the probability of a solution changes abruptly from near 0 to near 1. It is the high density of wellseparated almost solutions (local minima) at this boundary that cause search algorithms to "thrash". This boundary is a type of phase transition and we show that it is preserved under mappings between problems. We show that for some P problems either there is no phase transition or it occurs for bounded N (and so bound...
ZTree: Zurich Toolbox for Readymade Economic Experiments, Working paper No
, 1999
"... 2.2.2 Startup of the Experimenter PC............................................................................................... 9 2.2.3 Startup of the Subject PCs....................................................................................................... 9 ..."
Abstract

Cited by 1956 (33 self)
 Add to MetaCart
2.2.2 Startup of the Experimenter PC............................................................................................... 9 2.2.3 Startup of the Subject PCs....................................................................................................... 9
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Design and Evaluation of a WideArea Event Notification Service
 ACM Transactions on Computer Systems
"... This paper presents SIENA, an event notification service that we have designed and implemented to exhibit both expressiveness and scalability. We describe the service's interface to applications, the algorithms used by networks of servers to select and deliver event notifications, and the strat ..."
Abstract

Cited by 789 (32 self)
 Add to MetaCart
, and the strategies used Effort sponsored by the Defense Advanced Research Projects Agency, and Air Force Research Laboratory, Air Force Materiel Command,USAF, under agreement numbers F3060294C0253, F3060297 20021, F306029820163, F3060299C0174, F306020020608, and N66001008945; by the Air Force Office
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 512 (2 self)
 Add to MetaCart
~ (1, and then the result is classical. A simple proof appears in EnriquesChisini [E, vol. 3, chap. 3], based on analyzing the totality of coverings of p1 of degree n, with a fixed number d of ordinary branch points. This method has been extended to char. p by William Fulton [F], using specializations
Measuring individual differences in implicit cognition: The implicit association test
 J PERSONALITY SOCIAL PSYCHOL 74:1464–1480
, 1998
"... An implicit association test (IAT) measures differential association of 2 target concepts with an attribute. The 2 concepts appear in a 2choice task (e.g., flower vs. insect names), and the attribute in a 2nd task (e.g., pleasant vs. unpleasant words for an evaluation attribute). When instructions ..."
Abstract

Cited by 937 (63 self)
 Add to MetaCart
oblige highly associated categories (e.g., flower + pleasant) to share a response key, performance is faster than when less associated categories (e.g., insect + pleasant) share a key. This performance difference implicitly measures differential association of the 2 concepts with the attribute. In 3
ERC  A Theory of Equity, Reciprocity and Competition
 FORTHCOMING AMERICAN ECONOMIC REVIEW
, 1999
"... We demonstrate that a simple model, constructed on the premise that people are motivated by both their pecuniary payoff and their relative payoff standing, explains behavior in a wide variety of laboratory games. Included are games where equity is thought to be a factor, such as ultimatum, twoperio ..."
Abstract

Cited by 699 (21 self)
 Add to MetaCart
We demonstrate that a simple model, constructed on the premise that people are motivated by both their pecuniary payoff and their relative payoff standing, explains behavior in a wide variety of laboratory games. Included are games where equity is thought to be a factor, such as ultimatum, two
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
. The algorithms are tested on a standard LennardJones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers  the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray YMP and C90 algorithm shows
Results 1  10
of
6,175,502