Results 1  10
of
61,495
VariationAware Deterministic ATPG
"... This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan or sublicensing, systematic supply or distribution in any form to anyone is expressly forbidden. ..."
Abstract
 Add to MetaCart
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan or sublicensing, systematic supply or distribution in any form to anyone is expressly forbidden.
Mathematical Control Theory: Deterministic Finite Dimensional Systems
 of Texts in Applied Mathematics
, 1990
"... The title of this book gives a very good description of its contents and style, although I might have added “Introduction to ” at the beginning. The style is mathematical: precise, clear statements (i.e., theorems) are asserted, then carefully proved. The book covers many of the key topics in contro ..."
Abstract

Cited by 485 (122 self)
 Add to MetaCart
The title of this book gives a very good description of its contents and style, although I might have added “Introduction to ” at the beginning. The style is mathematical: precise, clear statements (i.e., theorems) are asserted, then carefully proved. The book covers many of the key topics in control theory, except — as the subtitle has warned us — those involving stochastic processes or infinitedimensional systems. The level is appropriate for a senior
Cognitive Radio: BrainEmpowered Wireless Communications
, 2005
"... Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a softwaredefined radio, is defined as an intelligent wireless communication system that is aware of its environment and use ..."
Abstract

Cited by 1479 (4 self)
 Add to MetaCart
Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a softwaredefined radio, is defined as an intelligent wireless communication system that is aware of its environment
SIS: A System for Sequential Circuit Synthesis
, 1992
"... SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential inputoutput b ..."
Abstract

Cited by 514 (41 self)
 Add to MetaCart
SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential inputoutput behavior. Many different programs and algorithms have been integrated into SIS, allowing the user to choose among a variety of techniques at each stage of the process. It is built on top of MISII [5] and includes all (combinational) optimization techniques therein as well as many enhancements. SIS serves as both a framework within which various algorithms can be tested and compared, and as a tool for automatic synthesis and optimization of sequential circuits. This paper provides an overview of SIS. The first part contains descriptions of the input specification, STG (state transition graph) manipulation, new logic optimization and verification algorithms, ASTG (asynchronous signal transition graph) manipulation, and synthesis for PGA’s (programmable gate arrays). The second part contains a tutorial example illustrating the design process using SIS.
Routing Techniques in Wireless Sensor Networks: A Survey
 IEEE Wireless Communications
, 2004
"... Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, howeve ..."
Abstract

Cited by 704 (2 self)
 Add to MetaCart
Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus
Geographyinformed Energy Conservation for Ad Hoc Routing
 ACM MOBICOM
, 2001
"... We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity. GA ..."
Abstract

Cited by 1037 (22 self)
 Add to MetaCart
We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity. GAF moderates this policy using application and systemlevel information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use. GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR. Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol. Moreover, simulations of GAF suggest that network lifetime increases proportionally to node density; in one example, a fourfold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern). More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of selfconfiguring systems by exploiting redundancy to conserve energy while maintaining application fidelity.
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma o(1)) ln n), and previous results of Lund and Yannakakis, that showed hardness of approximation within a ratio of (log 2 n)=2 ' 0:72 lnn. For max kcover we show an approximation threshold of (1 \Gamma 1=e) (up to low order terms), under the assumption that P != NP .
Face Recognition: A Literature Survey
, 2000
"... ... This paper provides an uptodate critical survey of still and videobased face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an uptodate review of the existing literature, and the second is to offer some insights into ..."
Abstract

Cited by 1363 (21 self)
 Add to MetaCart
... This paper provides an uptodate critical survey of still and videobased face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an uptodate review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition,
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1427 (15 self)
 Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals of scientific interest accurately and sometimes even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g. the number of pixels in the image. It is believed that compressive sampling has far reaching implications. For example, it suggests the possibility of new data acquisition protocols that translate analog information into digital form with fewer sensors than what was considered necessary. This new sampling theory may come to underlie procedures for sampling and compressing data simultaneously. In this short survey, we provide some of the key mathematical insights underlying this new theory, and explain some of the interactions between compressive sampling and other fields such as statistics, information theory, coding theory, and theoretical computer science.
Results 1  10
of
61,495