Results 1  10
of
1,509,313
Using TwoClass Classifiers for Multiclass Classification
"... The generalization from twoclass classification to multiclass classification is not straightforward for discriminants which are not based on density estimation. Simple combining methods use voting, but this has the drawback of inconsequent labelings and ties. More advanced methods map the discrimin ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
The generalization from twoclass classification to multiclass classification is not straightforward for discriminants which are not based on density estimation. Simple combining methods use voting, but this has the drawback of inconsequent labelings and ties. More advanced methods map
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 560 (20 self)
 Add to MetaCart
is compared against all others, or in which all pairs of classes are compared to each other, or in which output codes with errorcorrecting properties are used. We propose a general method for combining the classifiers generated on the binary problems, and we prove a general empirical multiclass loss bound
Large margin dags for multiclass classification
 Advances in Neural Information Processing Systems 12
, 2000
"... We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many twoclass classifiers into a multiclass classifier. For anclass problem, the DDAG contains � classifiers, one for each pair of classes. We present a VC analysis of the case when the nod ..."
Abstract

Cited by 368 (1 self)
 Add to MetaCart
We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many twoclass classifiers into a multiclass classifier. For anclass problem, the DDAG contains � classifiers, one for each pair of classes. We present a VC analysis of the case when
A Comparison of Methods for Multiclass Support Vector Machines
 IEEE TRANS. NEURAL NETWORKS
, 2002
"... Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary class ..."
Abstract

Cited by 935 (22 self)
 Add to MetaCart
classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using largescale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much
Hierarchically Classifying Documents Using Very Few Words
, 1997
"... The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text ..."
Abstract

Cited by 521 (8 self)
 Add to MetaCart
The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 788 (23 self)
 Add to MetaCart
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass
On combining classifiers
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1998
"... We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental ..."
Abstract

Cited by 1392 (32 self)
 Add to MetaCart
We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision
Exploiting Generative Models in Discriminative Classifiers
 In Advances in Neural Information Processing Systems 11
, 1998
"... Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often resu ..."
Abstract

Cited by 538 (11 self)
 Add to MetaCart
result in classification performance superior to that of the model based approaches. An ideal classifier should combine these two complementary approaches. In this paper, we develop a natural way of achieving this combination by deriving kernel functions for use in discriminative methods such as support
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable
Results 1  10
of
1,509,313