• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 2,793,405
Next 10 →

Computing semantic relatedness using Wikipedia-based explicit semantic analysis

by Evgeniy Gabrilovich, Shaul Markovitch - In Proceedings of the 20th International Joint Conference on Artificial Intelligence , 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedi ..."
Abstract - Cited by 546 (9 self) - Add to MetaCart
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from

Verb Semantics And Lexical Selection

by Zhibiao Wu , 1994
"... ... structure. As Levin has addressed (Levin 1985), the decomposition of verbs is proposed for the purposes of accounting for systematic semantic-syntactic correspondences. This results in a series of problems for MT systems: inflexible verb sense definitions; difficulty in handling metaphor and new ..."
Abstract - Cited by 520 (4 self) - Add to MetaCart
... structure. As Levin has addressed (Levin 1985), the decomposition of verbs is proposed for the purposes of accounting for systematic semantic-syntactic correspondences. This results in a series of problems for MT systems: inflexible verb sense definitions; difficulty in handling metaphor

The Semantics Of Constraint Logic Programs

by Joxan Jaffar, Michael Maher, Kim Marriott, Peter Stuckey - JOURNAL OF LOGIC PROGRAMMING , 1996
"... This paper presents for the first time the semantic foundations of CLP in a self-contained and complete package. The main contributions are threefold. First, we extend the original conference paper by presenting definitions and basic semantic constructs from first principles, giving new and comp ..."
Abstract - Cited by 872 (14 self) - Add to MetaCart
This paper presents for the first time the semantic foundations of CLP in a self-contained and complete package. The main contributions are threefold. First, we extend the original conference paper by presenting definitions and basic semantic constructs from first principles, giving new

Probabilistic Latent Semantic Indexing

by Thomas Hofmann , 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract - Cited by 1207 (11 self) - Add to MetaCart
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized

The Proposition Bank: An Annotated Corpus of Semantic Roles

by Martha Palmer, Paul Kingsbury, Daniel Gildea - Computational Linguistics , 2005
"... The Proposition Bank project takes a practical approach to semantic representation, adding a layer of predicate-argument information, or semantic role labels, to the syntactic structures of the Penn Treebank. The resulting resource can be thought of as shallow, in that it does not represent corefere ..."
Abstract - Cited by 536 (21 self) - Add to MetaCart
The Proposition Bank project takes a practical approach to semantic representation, adding a layer of predicate-argument information, or semantic role labels, to the syntactic structures of the Penn Treebank. The resulting resource can be thought of as shallow, in that it does not represent

SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries

by James Z. Wang, Jia Li, Gio Wiederhold - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001
"... The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an imag ..."
Abstract - Cited by 541 (35 self) - Add to MetaCart
), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation. As in other regionbased retrieval systems, an image is represented by a set of regions, roughly corresponding to objects

The Berkeley FrameNet Project

by Collin F. Baker , Charles J. Fillmore, John B. Lowe - IN PROCEEDINGS OF THE COLING-ACL , 1998
"... FrameNet is a three-year NSF-supported project in corpus-based computational lexicography, now in its second year #NSF IRI-9618838, #Tools for Lexicon Building"#. The project's key features are #a# a commitment to corpus evidence for semantic and syntactic generalizations, and #b# the repr ..."
Abstract - Cited by 624 (3 self) - Add to MetaCart
FrameNet is a three-year NSF-supported project in corpus-based computational lexicography, now in its second year #NSF IRI-9618838, #Tools for Lexicon Building"#. The project's key features are #a# a commitment to corpus evidence for semantic and syntactic generalizations, and #b

A taxonomy of web search

by Andrei Broder - SIGIR FORUM , 2002
"... Classic IR (information retrieval) is inherently predicated on users searching for information, the socalled "information need". But the need behind a web search is often not informational -- it might be navigational (give me the url of the site I want to reach) or transactional (show me s ..."
Abstract - Cited by 639 (4 self) - Add to MetaCart
Classic IR (information retrieval) is inherently predicated on users searching for information, the socalled "information need". But the need behind a web search is often not informational -- it might be navigational (give me the url of the site I want to reach) or transactional (show me

Probabilistic Latent Semantic Analysis

by Thomas Hofmann - In Proc. of Uncertainty in Artificial Intelligence, UAI’99 , 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract - Cited by 760 (9 self) - Add to MetaCart
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent

The Semantics of Predicate Logic as a Programming Language

by M. H. Van Emden, R. A. Kowalski - Journal of the ACM , 1976
"... ABSTRACT Sentences in first-order predicate logic can be usefully interpreted as programs In this paper the operational and fixpomt semantics of predicate logic programs are defined, and the connections with the proof theory and model theory of logic are investigated It is concluded that operational ..."
Abstract - Cited by 810 (18 self) - Add to MetaCart
ABSTRACT Sentences in first-order predicate logic can be usefully interpreted as programs In this paper the operational and fixpomt semantics of predicate logic programs are defined, and the connections with the proof theory and model theory of logic are investigated It is concluded
Next 10 →
Results 1 - 10 of 2,793,405
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University