• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 126,817
Next 10 →

WordNet: An on-line lexical database

by George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, Katherine Miller - International Journal of Lexicography , 1990
"... WordNet is an on-line lexical reference system whose design is inspired by current ..."
Abstract - Cited by 1945 (9 self) - Add to MetaCart
WordNet is an on-line lexical reference system whose design is inspired by current

Efficient and Effective Querying by Image Content

by C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, R. Barber - Journal of Intelligent Information Systems , 1994
"... In the QBIC (Query By Image Content) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include med ..."
Abstract - Cited by 500 (13 self) - Add to MetaCart
In the QBIC (Query By Image Content) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include

Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures

by Alexander Budanitsky, Graeme Hirst - IN WORKSHOP ON WORDNET AND OTHER LEXICAL RESOURCES, SECOND MEETING OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS , 2001
"... Five different proposed measures of similarity or semantic distance in WordNet were experimentally compared by examining their performance in a real-word spelling correction system. It was found that Jiang and Conrath 's measure gave the best results overall. That of Hirst and St-Onge seriously ..."
Abstract - Cited by 332 (4 self) - Add to MetaCart
Five different proposed measures of similarity or semantic distance in WordNet were experimentally compared by examining their performance in a real-word spelling correction system. It was found that Jiang and Conrath 's measure gave the best results overall. That of Hirst and St

Using information content to evaluate semantic similarity in a taxonomy

by Philip Resnik - In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95 , 1995
"... philip.resnikfleast.sun.com This paper presents a new measure of semantic similarity in an IS-A taxonomy, based on the notion of information content. Experimental evaluation suggests that the measure performs encouragingly well (a correlation of r = 0.79 with a benchmark set of human similarity judg ..."
Abstract - Cited by 1072 (8 self) - Add to MetaCart
philip.resnikfleast.sun.com This paper presents a new measure of semantic similarity in an IS-A taxonomy, based on the notion of information content. Experimental evaluation suggests that the measure performs encouragingly well (a correlation of r = 0.79 with a benchmark set of human similarity

Computing semantic relatedness using Wikipedia-based explicit semantic analysis

by Evgeniy Gabrilovich, Shaul Markovitch - In Proceedings of the 20th International Joint Conference on Artificial Intelligence , 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedi ..."
Abstract - Cited by 546 (9 self) - Add to MetaCart
with the previous state of the art, using ESA results in substantial improvements in correlation of computed relatedness scores with human judgments: from r =0.56 to 0.75 for individual words and from r =0.60 to 0.72 for texts. Importantly, due to the use of natural concepts, the ESA model is easy to explain

LabelMe: A Database and Web-Based Tool for Image Annotation

by B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman , 2008
"... We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sha ..."
Abstract - Cited by 670 (47 self) - Add to MetaCart
recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.

Image retrieval: Current techniques, promising directions and open issues

by Yong Rui, Thomas S. Huang - Journal of Visual Communication and Image Representation , 1999
"... This paper provides a comprehensive survey of the technical achievements in the research area of image retrieval, especially content-based image retrieval, an area that has been so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image fea ..."
Abstract - Cited by 492 (14 self) - Add to MetaCart
This paper provides a comprehensive survey of the technical achievements in the research area of image retrieval, especially content-based image retrieval, an area that has been so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image

WordNet-Affect: an Affective Extension of WordNet

by Ro Valitutti - In Proceedings of the 4th International Conference on Language Resources and Evaluation , 2004
"... In this paper we present a linguistic resource for the lexical representation of affective knowledge. This resource (named WORDNET-AFFECT) was developed starting from WORDNET, through a selection and tagging of a subset of synsets representing the affective meanings. 1. ..."
Abstract - Cited by 243 (1 self) - Add to MetaCart
In this paper we present a linguistic resource for the lexical representation of affective knowledge. This resource (named WORDNET-AFFECT) was developed starting from WORDNET, through a selection and tagging of a subset of synsets representing the affective meanings. 1.

Semantic similarity based on corpus statistics and lexical taxonomy

by Jay J. Jiang, David W. Conrath - Proc of 10th International Conference on Research in Computational Linguistics, ROCLING’97 , 1997
"... This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better quantifie ..."
Abstract - Cited by 852 (0 self) - Add to MetaCart
This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better

Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language

by Philip Resnik , 1999
"... This article presents a measure of semantic similarityinanis-a taxonomy based on the notion of shared information content. Experimental evaluation against a benchmark set of human similarity judgments demonstrates that the measure performs better than the traditional edge-counting approach. The a ..."
Abstract - Cited by 601 (9 self) - Add to MetaCart
This article presents a measure of semantic similarityinanis-a taxonomy based on the notion of shared information content. Experimental evaluation against a benchmark set of human similarity judgments demonstrates that the measure performs better than the traditional edge-counting approach
Next 10 →
Results 1 - 10 of 126,817
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University