Results 1  10
of
128,013
Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment
, 2003
"... ..."
Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment
 IEEE Trans. Medical Imaging
, 2003
"... © 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other w ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
recent works have used a nonparametric framework for this estimation, considering each brain region as a system characterized by its impulse response, the socalled hemodynamic response function (HRF). However, the use of these techniques has remained limited since they are not welladapted to real fMRI
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas of bootstrap inference. The paper discusses Monte Carlo tests, several types of bootstrap test, and bootstrap confidence intervals. Although bootstrapping often works well, it does not do so in every case.
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length
Nonparametric estimation of average treatment effects under exogeneity: a review
 REVIEW OF ECONOMICS AND STATISTICS
, 2004
"... Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogen ..."
Abstract

Cited by 597 (26 self)
 Add to MetaCart
considered estimation and inference for average treatment effects under weaker assumptions than typical of the earlier literature by avoiding distributional and functionalform assumptions. Various methods of semiparametric estimation have been proposed, including estimating the unknown regression functions
Analysis of fMRI Data by Blind Separation Into Independent Spatial Components
 Human Brain Mapping
, 1998
"... : Current analytical techniques applied to functional magnetic resonance imaging (fMRI) data require a priori knowledge or specific assumptions about the time courses of processes contributing to the measured signals. Here we describe a new method for analyzing fMRI data based on the independent ..."
Abstract

Cited by 309 (18 self)
 Add to MetaCart
: Current analytical techniques applied to functional magnetic resonance imaging (fMRI) data require a priori knowledge or specific assumptions about the time courses of processes contributing to the measured signals. Here we describe a new method for analyzing fMRI data based on the independent
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than
Thresholding of statistical maps in functional neuroimaging using the false discovery rate
 Neuroimage
, 2002
"... Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures for multi ..."
Abstract

Cited by 494 (8 self)
 Add to MetaCart
hypotheses that are falsely rejected. We demonstrate this approach using both simulations and functional magnetic resonance imaging data from two
Results 1  10
of
128,013