Results 1  10
of
194,563
Universal OneWay Hash Functions via Inaccessible Entropy
, 2010
"... This paper revisits the construction of Universal OneWay Hash Functions (UOWHFs) from any oneway function due to Rompel (STOC 1990). We give a simpler construction of UOWHFs, which also obtains better efficiency and security. The construction exploits a strong connection to the recently introduced ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
This paper revisits the construction of Universal OneWay Hash Functions (UOWHFs) from any oneway function due to Rompel (STOC 1990). We give a simpler construction of UOWHFs, which also obtains better efficiency and security. The construction exploits a strong connection to the recently
PseudoRandom Generation from OneWay Functions
 PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract

Cited by 887 (22 self)
 Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom
Inaccessible Entropy
"... We put forth a new computational notion of entropy, which measures the (in)feasibility of sampling high entropy strings that are consistent with a given protocol. Specifically, we say that the i’th round of a protocol (A, B) has accessible entropy at most k, if no polynomialtime strategy A ∗ can ge ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
that constantround statistically hiding commitments are necessary for constructing constantround zeroknowledge proof systems for NP that remain secure under parallel composition (assuming the existence of oneway functions). Categories and Subject Descriptors: F.0 [Theory of Computation]: General.
Discriminative Training and Maximum Entropy Models for Statistical Machine Translation
, 2002
"... We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language senten ..."
Abstract

Cited by 497 (30 self)
 Add to MetaCart
We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language
A Maximum Entropy Model for PartOfSpeech Tagging
, 1996
"... This paper presents a statistical model which trains from a corpus annotated with PartOfSpeech tags and assigns them to previously unseen text with stateoftheart accuracy(96.6%). The model can be classified as a Maximum Entropy model and simultaneously uses many contextual "features" t ..."
Abstract

Cited by 577 (1 self)
 Add to MetaCart
This paper presents a statistical model which trains from a corpus annotated with PartOfSpeech tags and assigns them to previously unseen text with stateoftheart accuracy(96.6%). The model can be classified as a Maximum Entropy model and simultaneously uses many contextual "
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass
SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad Hoc Networks
, 2003
"... An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance vec ..."
Abstract

Cited by 522 (8 self)
 Add to MetaCart
. In order to support use with nodes of limited CPU processing capability, and to guard against DenialofService attacks in which an attacker attempts to cause other nodes to consume excess network bandwidth or processing time, we use efficient oneway hash functions and do not use asymmetric cryptographic
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Wireless Communications
, 2005
"... Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University ..."
Abstract

Cited by 1129 (32 self)
 Add to MetaCart
Copyright c ○ 2005 by Cambridge University Press. This material is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University
Shape modeling with front propagation: A level set approach
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods ..."
Abstract

Cited by 804 (20 self)
 Add to MetaCart
in the vicinity of object boundaries. The resulting equation of motion is solved by employing entropysatisfying upwind finite difference schemes. We present a variety of ways of computing evolving front, including narrow bands, reinitializations, and different stopping criteria. The efficacy of the scheme
Results 1  10
of
194,563