Results 1  10
of
18,255
Unimodal Bandits without Smoothness
, 2014
"... We consider stochastic bandit problems with a continuum set of arms and where the expected reward is a continuous and unimodal function of the arm. No further assumption is made regarding the smoothness and the structure of the expected reward function. We propose Stochastic Pentachotomy (SP), an a ..."
Abstract
 Add to MetaCart
We consider stochastic bandit problems with a continuum set of arms and where the expected reward is a continuous and unimodal function of the arm. No further assumption is made regarding the smoothness and the structure of the expected reward function. We propose Stochastic Pentachotomy (SP
Unimodal bandits
, 2011
"... We consider multiarmed bandit problems where the expected reward is unimodal over partially ordered arms. In particular, the arms may belong to a continuous interval or correspond to vertices in a graph, where the graph structure represents similarity in rewards. The unimodality assumption has an im ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
We consider multiarmed bandit problems where the expected reward is unimodal over partially ordered arms. In particular, the arms may belong to a continuous interval or correspond to vertices in a graph, where the graph structure represents similarity in rewards. The unimodality assumption has
CONDENSATION  conditional density propagation for visual tracking
 International Journal of Computer Vision
, 1998
"... The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously appli ..."
Abstract

Cited by 1499 (12 self)
 Add to MetaCart
The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 1032 (76 self)
 Add to MetaCart
section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models.
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little systematic guidance associated with these methods for solving important practical questions that arise in cluster analysis, such as \How many clusters are there?", "Which clustering method should be used?" and \How should outliers be handled?". We outline a general methodology for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster recovery from noisy data, and spatial density estimation. Finally, we mention limitations of the methodology, a...
A Survey of Computer VisionBased Human Motion Capture
 Computer Vision and Image Understanding
, 2001
"... A comprehensive survey of computer visionbased human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each ..."
Abstract

Cited by 508 (14 self)
 Add to MetaCart
A comprehensive survey of computer visionbased human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each process is discussed and divided into subprocesses and/or categories of methods to provide a reference to describe and compare the more than 130 publications covered by the survey. References are included throughout the paper to exemplify important issues and their relations to the various methods. A number of general assumptions used in this research field are identified and the character of these assumptions indicates that the research field is still in an early stage of development. To evaluate the state of the art, the major application areas are identified and performances are analyzed in light of the methods
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Results 1  10
of
18,255