Results 1 - 10
of
1,311,606
Uniform sampling for matrix approximation
- In Proceedings of the 6th Annual Conference on Innovations in Theoretical Computer Science (ITCS
, 2015
"... ar ..."
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract
-
Cited by 1427 (15 self)
- Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is ffl-far from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract
-
Cited by 498 (68 self)
- Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is ffl-far from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query
Greedy Function Approximation: A Gradient Boosting Machine
- Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract
-
Cited by 951 (12 self)
- Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Determining the Number of Factors in Approximate Factor Models
, 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract
-
Cited by 538 (29 self)
- Add to MetaCart
In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors can be consistently estimated using the criterion. The theory is developed under the framework of large cross-sections (N) and large time dimensions (T). No restriction is imposed on the relation between N and T. Simulations show that the proposed criterion yields almost precise estimates of the number of factors for configurations of the panel data encountered in practice. The idea that variations in a large number of economic variables can be modelled bya small number of reference variables is appealing and is used in manyeconomic analysis. In the finance literature, the arbitrage pricing theory(APT) of Ross (1976) assumes that a small number of factors can be used to explain a large number of asset returns.
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract
-
Cited by 516 (2 self)
- Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
A Guided Tour to Approximate String Matching
- ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract
-
Cited by 584 (38 self)
- Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining the problem and its relevance, its statistical behavior, its history and current developments, and the central ideas of the algorithms and their complexities. We present a number of experiments to compare the performance of the different algorithms and show which are the best choices according to each case. We conclude with some future work directions and open problems.
Learning the Kernel Matrix with Semi-Definite Programming
, 2002
"... Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract
-
Cited by 780 (22 self)
- Add to MetaCart
is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space---classical model selection
The space complexity of approximating the frequency moments
- JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract
-
Cited by 855 (12 self)
- Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
Results 1 - 10
of
1,311,606