Results 1  10
of
6,762
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory progressed also to the study of socalled stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.
Unfolding Orthogonal Polyhedra
 CONTEMPORARY MATHEMATICS
"... Recent progress is described on the unsolved problem of unfolding the surface of an orthogonal polyhedron to a single nonoverlapping planar piece by cutting edges of the polyhedron. Although this is in general not possible, partitioning the faces into the natural vertexgrid may render it always a ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Recent progress is described on the unsolved problem of unfolding the surface of an orthogonal polyhedron to a single nonoverlapping planar piece by cutting edges of the polyhedron. Although this is in general not possible, partitioning the faces into the natural vertexgrid may render it always
Multiresolution Analysis for Surfaces Of Arbitrary . . .
, 1993
"... Multiresolution analysis provides a useful and efficient tool for representing shape and analyzing features at multiple levels of detail. Although the technique has met with considerable success when applied to univariate functions, images, and more generally to functions defined on lR , to our k ..."
Abstract

Cited by 390 (3 self)
 Add to MetaCart
Multiresolution analysis provides a useful and efficient tool for representing shape and analyzing features at multiple levels of detail. Although the technique has met with considerable success when applied to univariate functions, images, and more generally to functions defined on lR , to our knowledge it has not been extended to functions defined on surfaces of arbitrary genus. In this
Grid vertexunfolding orthogonal polyhedra
 In Proc. 23rd Sympos. Theoret. Aspects Comput. Sci., Lecture Notes Comput. Sci
, 2006
"... An edgeunfolding of a polyhedron is produced by cutting along edges and flattening the faces to a net, a connected planar piece with no overlaps. A grid unfolding allows additional cuts along grid edges induced by coordinate planes passing through every vertex. A vertexunfolding permits faces in t ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
in the net to be connected at single vertices, not necessarily along edges. We show that any orthogonal polyhedron of genus zero has a grid vertexunfolding. (There are orthogonal polyhedra that cannot be vertexunfolded, so some type of “gridding ” of the faces is necessary.) For any orthogonal polyhedron P
PartialOrder Methods for the Verification of Concurrent Systems  An Approach to the StateExplosion Problem
, 1995
"... Statespace exploration techniques are increasingly being used for debugging and proving correct finitestate concurrent reactive systems. The reason for this success is mainly the simplicity of these techniques. Indeed, they are easy to understand, easy to implement and, last but not least, easy to ..."
Abstract

Cited by 362 (11 self)
 Add to MetaCart
Statespace exploration techniques are increasingly being used for debugging and proving correct finitestate concurrent reactive systems. The reason for this success is mainly the simplicity of these techniques. Indeed, they are easy to understand, easy to implement and, last but not least, easy to use: they are fully automatic. Moreover, the range of properties that they can verify has been substantially broadened thanks to the development of modelchecking methods for various temporal logics. The main limit of statespace exploration verification techniques is the often excessive size of the state space due, among other causes, to the modeling of concurrency by interleaving. However, exploring all interleavings of concurrent events is not a priori necessary for verification: interleavings corresponding to the same concurrent execution contain related information. One can thus hope to be able to verify properties of a concurrent system without exploring all interleavings of its concu...
Bucket Elimination: A Unifying Framework for Probabilistic Inference
, 1996
"... Probabilistic inference algorithms for belief updating, finding the most probable explanation, the maximum a posteriori hypothesis, and the maximum expected utility are reformulated within the bucket elimination framework. This emphasizes the principles common to many of the algorithms appearing in ..."
Abstract

Cited by 313 (32 self)
 Add to MetaCart
Probabilistic inference algorithms for belief updating, finding the most probable explanation, the maximum a posteriori hypothesis, and the maximum expected utility are reformulated within the bucket elimination framework. This emphasizes the principles common to many of the algorithms appearing
Illustrating Smooth Surfaces
 PROCEEDINGS OF SIGGRAPH 2000
, 2000
"... We present a new set of algorithms for lineart rendering of smooth surfaces. We introduce an efficient, deterministic algorithm for finding silhouettes based on geometric duality, and an algorithm for segmenting the silhouette curves into smooth parts with constant visibility. These methods can be ..."
Abstract

Cited by 288 (10 self)
 Add to MetaCart
We present a new set of algorithms for lineart rendering of smooth surfaces. We introduce an efficient, deterministic algorithm for finding silhouettes based on geometric duality, and an algorithm for segmenting the silhouette curves into smooth parts with constant visibility. These methods can
Results 1  10
of
6,762