Results 1 - 10
of
275,330
Flexible smoothing with B-splines and penalties
- STATISTICAL SCIENCE
, 1996
"... B-splines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small and discrete number allows only limited control over smoothness and fit. We propose to use a relatively large number of knots ..."
Abstract
-
Cited by 396 (6 self)
- Add to MetaCart
B-splines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small and discrete number allows only limited control over smoothness and fit. We propose to use a relatively large number
Unified analysis of discontinuous Galerkin methods for elliptic problems
- SIAM J. Numer. Anal
, 2001
"... Abstract. We provide a framework for the analysis of a large class of discontinuous methods for second-order elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical treatment ..."
Abstract
-
Cited by 519 (31 self)
- Add to MetaCart
Abstract. We provide a framework for the analysis of a large class of discontinuous methods for second-order elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
- SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2-orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract
-
Cited by 2046 (40 self)
- Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2-orthogonal basis of Krylov subspaces. It can be considered
Limma: linear models for microarray data
- Bioinformatics and Computational Biology Solutions using R and Bioconductor
, 2005
"... This free open-source software implements academic research by the authors and co-workers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents ..."
Abstract
-
Cited by 759 (13 self)
- Add to MetaCart
This free open-source software implements academic research by the authors and co-workers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract
-
Cited by 3535 (22 self)
- Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract
-
Cited by 1513 (20 self)
- Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Content-based image retrieval at the end of the early years
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract
-
Cited by 1594 (24 self)
- Add to MetaCart
The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps
Cilk: An Efficient Multithreaded Runtime System
- JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
, 1995
"... Cilk (pronounced "silk") is a C-based runtime system for multithreaded parallel programming. In this paper, we document the efficiency of the Cilk work-stealing scheduler, both empirically and analytically. We show that on real and synthetic applications, the "work" and "cri ..."
Abstract
-
Cited by 750 (40 self)
- Add to MetaCart
Cilk (pronounced "silk") is a C-based runtime system for multithreaded parallel programming. In this paper, we document the efficiency of the Cilk work-stealing scheduler, both empirically and analytically. We show that on real and synthetic applications, the "work" and "
Linear spatial pyramid matching using sparse coding for image classification
- in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract
-
Cited by 488 (19 self)
- Add to MetaCart
the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably
Results 1 - 10
of
275,330