Results 1 - 10
of
1,665,151
Understanding Normal and Impaired Word Reading: Computational Principles in Quasi-Regular Domains
- PSYCHOLOGICAL REVIEW
, 1996
"... We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract
-
Cited by 583 (94 self)
- Add to MetaCart
and phonological representations that capture better the relevant structure among the written and spoken forms of words. In a number of simulation experiments, networks using the new representations learn to read both regular and exception words, including low-frequency exception words, and yet are still able
The irreducibility of the space of curves of given genus
- Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~- ..."
Abstract
-
Cited by 512 (2 self)
- Add to MetaCart
; for abelian varieties. This result was first proved independently in char. o by Grothendieck, using methods of etale cohomology (private correspondence with J. Tate), and by Mumford, applying the easy half of Theorem (2.5), to go from curves to abelian varieties (cf. [M2]). Grothendieck has recently
Iterative point matching for registration of free-form curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract
-
Cited by 659 (7 self)
- Add to MetaCart
A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately
Constraint Networks
, 1992
"... Constraint-based reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract
-
Cited by 1149 (43 self)
- Add to MetaCart
expressions. These have been successfully applied to diverse tasks such as design, diagnosis, truth maintenance, scheduling, spatiotemporal reasoning, logic programming and user interface. Constraint networks are graphical representations used to guide strategies for solving constraint satisfaction problems
An introduction to variable and feature selection
- Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract
-
Cited by 1283 (16 self)
- Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
Internet time synchronization: The network time protocol
, 1989
"... This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a self-organizing, hierarchi ..."
Abstract
-
Cited by 617 (15 self)
- Add to MetaCart
This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a self
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract
-
Cited by 788 (23 self)
- Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly
Statistical mechanics of complex networks
- Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract
-
Cited by 2083 (10 self)
- Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
The use of the area under the ROC curve in the evaluation of machine learning algorithms
- Pattern Recognition
, 1997
"... Abstract--In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi-layer Percept ..."
Abstract
-
Cited by 664 (3 self)
- Add to MetaCart
Abstract--In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi
Results 1 - 10
of
1,665,151