• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 130,402
Next 10 →

Imagenet classification with deep convolutional neural networks

by Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton - Advances in Neural Information Processing Systems
"... We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0 % which is considerably better than the previous st ..."
Abstract - Cited by 917 (11 self) - Add to MetaCart
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0 % which is considerably better than the previous

An Efficient Boosting Algorithm for Combining Preferences

by Raj Dharmarajan Iyer , Jr. , 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract - Cited by 707 (18 self) - Add to MetaCart
boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experiment, we used the algorithm to combine different WWW

Greedy layer-wise training of deep networks

by Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle - IN NIPS , 2007
"... Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multi-layer neural networks have many levels of non-linearities allow ..."
Abstract - Cited by 384 (48 self) - Add to MetaCart
Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multi-layer neural networks have many levels of non

A Practical Bayesian Framework for Backprop Networks

by David J.C. MacKay - Neural Computation , 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract - Cited by 496 (20 self) - Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures

A Bayesian method for the induction of probabilistic networks from data

by Gregory F. Cooper, EDWARD HERSKOVITS - MACHINE LEARNING , 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract - Cited by 1381 (32 self) - Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction

An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants

by Eric Bauer, Ron Kohavi - MACHINE LEARNING , 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract - Cited by 695 (2 self) - Add to MetaCart
for Naive-Bayes, which was very stable. We observed that Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference. Voting variants, some of which are introduced in this paper, include: pruning versus no pruning, use

An evaluation of statistical approaches to text categorization

by Yiming Yang - Journal of Information Retrieval , 1999
"... Abstract. This paper focuses on a comparative evaluation of a wide-range of text categorization methods, including previously published results on the Reuters corpus and new results of additional experiments. A controlled study using three classifiers, kNN, LLSF and WORD, was conducted to examine th ..."
Abstract - Cited by 664 (23 self) - Add to MetaCart
were used as baselines, since they were evaluated on all versions of Reuters that exclude the unlabelled documents. As a global observation, kNN, LLSF and a neural network method had the best performance; except for a Naive Bayes approach, the other learning algorithms also performed relatively well.

Wrappers for Feature Subset Selection

by Ron Kohavi, George H. John - AIJ SPECIAL ISSUE ON RELEVANCE , 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract - Cited by 1522 (3 self) - Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set

Understanding Normal and Impaired Word Reading: Computational Principles in Quasi-Regular Domains

by David C. Plaut , James L. McClelland, Mark S. Seidenberg, Karalyn Patterson - PSYCHOLOGICAL REVIEW , 1996
"... We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract - Cited by 583 (94 self) - Add to MetaCart
and phonological representations that capture better the relevant structure among the written and spoken forms of words. In a number of simulation experiments, networks using the new representations learn to read both regular and exception words, including low-frequency exception words, and yet are still able

Community detection in graphs

by Santo Fortunato , 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract - Cited by 801 (1 self) - Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Next 10 →
Results 1 - 10 of 130,402
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University