• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 363,485
Next 10 →

Towards flexible teamwork

by Milind Tambe - JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH , 1997
"... Many AI researchers are today striving to build agent teams for complex, dynamic multi-agent domains, with intended applications in arenas such as education, training, entertainment, information integration, and collective robotics. Unfortunately, uncertainties in these complex, dynamic domains obst ..."
Abstract - Cited by 571 (57 self) - Add to MetaCart
. This article presents one general, implemented model of teamwork, called STEAM. The basic building block of teamwork in STEAM is joint intentions (Cohen & Levesque, 1991b); teamwork in STEAM is based on agents' building up a (partial) hierarchy of joint intentions (this hierarchy is seen to parallel

Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics

by Geir Evensen - J. Geophys. Res , 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract - Cited by 782 (22 self) - Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter

Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions

by Gediminas Adomavicius, Alexander Tuzhilin - IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , 2005
"... This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes vario ..."
Abstract - Cited by 1420 (21 self) - Add to MetaCart
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes

Planning Algorithms

by Steven M LaValle , 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract - Cited by 1108 (51 self) - Add to MetaCart
, planning under uncertainty, sensor-based planning, visibility, decision-theoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.

Wrapper Induction for Information Extraction

by Nicholas Kushmerick , 1997
"... The Internet presents numerous sources of useful information---telephone directories, product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have been built that automatically gather and manipulate such information on a user's behalf. However, these resources are usually ..."
Abstract - Cited by 612 (30 self) - Add to MetaCart
The Internet presents numerous sources of useful information---telephone directories, product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have been built that automatically gather and manipulate such information on a user's behalf. However, these resources

A learning algorithm for Boltzmann machines

by H. Ackley, E. Hinton, J. Sejnowski - Cognitive Science , 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract - Cited by 586 (13 self) - Add to MetaCart
. Second, there must be some way of choosing internal representations which allow the preexisting hardware connections to be used efficiently for encoding the con-straints in the domain being searched. We describe a generol parallel search method, based on statistical mechanics, and we show how it leads

Basic concepts and taxonomy of dependable and secure computing

by Algirdas Avizienis, Jean-claude Laprie, Brian Randell, Carl Landwehr - IEEE TDSC , 2004
"... This paper gives the main definitions relating to dependability, a generic concept including as special case such attributes as reliability, availability, safety, integrity, maintainability, etc. Security brings in concerns for confidentiality, in addition to availability and integrity. Basic defin ..."
Abstract - Cited by 758 (6 self) - Add to MetaCart
definitions are given first. They are then commented upon, and supplemented by additional definitions, which address the threats to dependability and security (faults, errors, failures), their attributes, and the means for their achievement (fault prevention, fault tolerance, fault removal, fault forecasting

Semi-Supervised Learning Literature Survey

by Xiaojin Zhu , 2006
"... We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter ..."
Abstract - Cited by 757 (8 self) - Add to MetaCart
We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a

The performance of mutual funds in the period 1945-1964

by Michael C. Jensen - JOURNAL OF FINANCE , 1968
"... In this paper I derive a risk-adjusted measure of portfolio performance (now known as "Jensen's Alpha") that estimates how much a manager's forecasting ability contributes to the fund's returns. The measure is based on the theory of the pricing of capital assets by Sharpe (1 ..."
Abstract - Cited by 584 (1 self) - Add to MetaCart
In this paper I derive a risk-adjusted measure of portfolio performance (now known as "Jensen's Alpha") that estimates how much a manager's forecasting ability contributes to the fund's returns. The measure is based on the theory of the pricing of capital assets by Sharpe

Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility

by Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, Ivona Br
"... With the significant advances in Information and Communications Technology (ICT) over the last half century, there is an increasingly perceived vision that computing will one day be the 5th utility (after water, electricity, gas, and telephony). This computing utility, like all other four existing u ..."
Abstract - Cited by 620 (62 self) - Add to MetaCart
in industries along with our current work towards realizing market-oriented resource allocation of Clouds as realized in Aneka enterprise Cloud technology. Furthermore, we highlight the difference between High Performance Computing (HPC) workload and Internet-based services workload. We also describe a meta
Next 10 →
Results 1 - 10 of 363,485
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University