Results 1  10
of
5,690
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
are given, one that constructs the Voronoi diagram in O(n log n) time, and another that inserts a new site in O(n) time. Both are based on the use of the Voronoi dual, or Delaunay triangulation, and are simple enough to be of practical value. The simplicity of both algorithms can be attributed
Surface Reconstruction by Voronoi Filtering
 Discrete and Computational Geometry
, 1998
"... We give a simple combinatorial algorithm that computes a piecewiselinear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled ..."
Abstract

Cited by 418 (15 self)
 Add to MetaCart
We give a simple combinatorial algorithm that computes a piecewiselinear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled
A New VoronoiBased Surface Reconstruction Algorithm
, 2002
"... We describe our experience with a new algorithm for the reconstruction of surfaces from unorganized sample points in R³. The algorithm is the first for this problem with provable guarantees. Given a “good sample” from a smooth surface, the output is guaranteed to be topologically correct and converg ..."
Abstract

Cited by 422 (9 self)
 Add to MetaCart
, rather than approximates, the input points. Our algorithm is based on the threedimensional Voronoi diagram. Given a good program for this fundamental subroutine, the algorithm is quite easy to implement.
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
, planning under uncertainty, sensorbased planning, visibility, decisiontheoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Coverage Problems in Wireless Adhoc Sensor Networks
 in IEEE INFOCOM
, 2001
"... Wireless adhoc sensor networks have recently emerged as a premier research topic. They have great longterm economic potential, ability to transform our lives, and pose many new systembuilding challenges. Sensor networks also pose a number of new conceptual and optimization problems. Some, such as ..."
Abstract

Cited by 434 (9 self)
 Add to MetaCart
by a particular sensor network. We first define the coverage problem from several points of view including deterministic, statistical, worst and best case, and present examples in each domain. By combining computational geometry and graph theoretic techniques, specifically the Voronoi diagram and graph
ReTiling Polygonal Surfaces
 Computer Graphics
, 1992
"... This paper presents an automatic method of creating surface models at several levels of detail from an original polygonal description of a given object. Representing models at various levels of detail is important for achieving high frame rates in interactive graphics applications and also for speed ..."
Abstract

Cited by 448 (3 self)
 Add to MetaCart
for speedingup the offline rendering of complex scenes. Unfortunately, generating these levels of detail is a timeconsuming task usually left to a human modeler. This paper shows how a new set of vertices can be distributed over the surface of a model and connected to one another to create a retiling of a
Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware
, 1999
"... We present a new approach for computing generalized 2D and 3D Voronoi diagrams using interpolationbased polygon rasterization hardware. We compute a discrete Voronoi diagram by rendering a three dimensional distance mesh for each Voronoi site. The polygonal mesh is a boundederror approximation of ..."
Abstract

Cited by 233 (26 self)
 Add to MetaCart
segments, polygons, polyhedra, curves, and curved surfaces in 2D and 3D. We generalize to weighted and farthestsite Voronoi diagrams, and present efficient techniques for computing the Voronoi boundaries, Voronoi neighbors, and the Delaunay triangulation of points. We also show how to adaptively refine
Results 1  10
of
5,690