Results 1  10
of
637,917
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 536 (112 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 694 (64 self)
 Add to MetaCart
. In this system sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial and timevarying, and links and sources to update
Optimal Brain Damage
, 1990
"... We have used informationtheoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved sp ..."
Abstract

Cited by 510 (5 self)
 Add to MetaCart
We have used informationtheoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved
Particle swarm optimization
, 1995
"... A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear fun ..."
Abstract

Cited by 3769 (22 self)
 Add to MetaCart
function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.
Neural network ensembles, cross validation, and active learning
 Neural Information Processing Systems 7
, 1995
"... Learning of continuous valued functions using neural network ensembles (committees) can give improved accuracy, reliable estimation of the generalization error, and active learning. The ambiguity is defined as the variation of the output of ensemble members averaged over unlabeled data, so it qua ..."
Abstract

Cited by 479 (6 self)
 Add to MetaCart
Learning of continuous valued functions using neural network ensembles (committees) can give improved accuracy, reliable estimation of the generalization error, and active learning. The ambiguity is defined as the variation of the output of ensemble members averaged over unlabeled data, so
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract

Cited by 679 (10 self)
 Add to MetaCart
For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 727 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
RealTime Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations
"... A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrateandfire neurons in realtime. We propose a new computational model for realtime computing on timevar ..."
Abstract

Cited by 469 (38 self)
 Add to MetaCart
A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrateandfire neurons in realtime. We propose a new computational model for realtime computing on timevarying
TABU SEARCH
"... Tabu Search is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. One of the main components of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore the hallm ..."
Abstract

Cited by 822 (48 self)
 Add to MetaCart
. These networks have been widely used for both prediction and classification in many different areas. Although the most popular method for training these networks is backpropagation, other optimization methods such as tabu search have been applied to solve this problem. This chapter describes two training
Distortion invariant object recognition in the dynamic link architecture
 IEEE TRANSACTIONS ON COMPUTERS
, 1993
"... We present an object recognition system based on the Dynamic Link Architecture, which is an extension to classical Artificial Neural Networks. The Dynamic Link Architecture exploits correlations in the finescale temporal structure of cellular signals in order to group neurons dynamically into hig ..."
Abstract

Cited by 637 (80 self)
 Add to MetaCart
We present an object recognition system based on the Dynamic Link Architecture, which is an extension to classical Artificial Neural Networks. The Dynamic Link Architecture exploits correlations in the finescale temporal structure of cellular signals in order to group neurons dynamically
Results 1  10
of
637,917