Results 1  10
of
969,641
Predictive regressions
 Journal of Financial Economics
, 1999
"... When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's "nitesample properties, derived here, can depart substantially from the standard regression set ..."
Abstract

Cited by 452 (19 self)
 Add to MetaCart
When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's "nitesample properties, derived here, can depart substantially from the standard regression
New Support Vector Algorithms
, 2000
"... this article with the regression case. To explain this, we will introduce a suitable definition of a margin that is maximized in both cases ..."
Abstract

Cited by 461 (42 self)
 Add to MetaCart
this article with the regression case. To explain this, we will introduce a suitable definition of a margin that is maximized in both cases
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm
Support Vector Machines for Classification and Regression
 UNIVERSITY OF SOUTHAMPTON, TECHNICAL REPORT
, 1998
"... The problem of empirical data modelling is germane to many engineering applications.
In empirical data modelling a process of induction is used to build up a model of the
system, from which it is hoped to deduce responses of the system that have yet to be observed.
Ultimately the quantity and qualit ..."
Abstract

Cited by 342 (5 self)
 Add to MetaCart
the terminology for SVMs can be slightly confusing. The term SVM is typically
used to describe classification with support vector methods and support vector
regression is used to describe regression with support vector methods. In this report
the term SVM will refer to both classification and regression methods
Quantile Regression
 JOURNAL OF ECONOMIC PERSPECTIVES—VOLUME 15, NUMBER 4—FALL 2001—PAGES 143–156
, 2001
"... We say that a student scores at the fifth quantile of a standardized exam if he performs better than the proportion � of the reference group of students and worse than the proportion (1–�). Thus, half of students perform better than the median student and half perform worse. Similarly, the quartiles ..."
Abstract

Cited by 937 (10 self)
 Add to MetaCart
, the quartiles divide the population into four segments with equal proportions of the reference population in each segment. The quintiles divide the population into five parts; the deciles into ten parts. The quantiles, or percentiles, or occasionally fractiles, refer to the general case. Quantile regression
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived
LIBSVM: a Library for Support Vector Machines
, 2001
"... LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1 ..."
Abstract

Cited by 6287 (82 self)
 Add to MetaCart
LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Results 1  10
of
969,641