Results 1 - 10
of
1,057,917
TiMDPpoly : an Improved Method for Solving Time-dependent MDPs
- In International Conference on Tools with Artificial Intelligence
, 2009
"... We introduce TiMDPpoly, an algorithm designed to solve planning problems with durative actions, under probabilis-tic uncertainty, in a non-stationary, continuous-time con-text. Mission planning for autonomous agents such as plan-etary rovers or unmanned aircrafts often correspond to such time-depend ..."
Abstract
-
Cited by 1 (1 self)
- Add to MetaCart
We introduce TiMDPpoly, an algorithm designed to solve planning problems with durative actions, under probabilis-tic uncertainty, in a non-stationary, continuous-time con-text. Mission planning for autonomous agents such as plan-etary rovers or unmanned aircrafts often correspond to such time-dependent
A New Method for Solving Hard Satisfiability Problems
- AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract
-
Cited by 734 (21 self)
- Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
Cognitive load during problem solving: effects on learning
- COGNITIVE SCIENCE
, 1988
"... Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problem-solving skill. Evidence that conventional problem-solving activity is not effective in schema acquisition is also accumulating. It is suggested t ..."
Abstract
-
Cited by 603 (13 self)
- Add to MetaCart
Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problem-solving skill. Evidence that conventional problem-solving activity is not effective in schema acquisition is also accumulating. It is suggested
Solving multiclass learning problems via error-correcting output codes
- JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract
-
Cited by 730 (8 self)
- Add to MetaCart
that|like the other methods|the error-correcting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that error-correcting output codes provide a general-purpose method for improving the performance of inductive learning programs on multiclass
Improved Statistical Alignment Models
- In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics
, 2000
"... In this paper, we present and compare various single-word based alignment models for statistical machine translation. We discuss the five IBM alignment models, the Hidden-Markov alignment model, smoothing techniques and various modifications. ..."
Abstract
-
Cited by 593 (13 self)
- Add to MetaCart
In this paper, we present and compare various single-word based alignment models for statistical machine translation. We discuss the five IBM alignment models, the Hidden-Markov alignment model, smoothing techniques and various modifications.
Eliciting self-explanations improves understanding
- Cognitive Science
, 1994
"... Learning involves the integration of new information into existing knowledge. Generoting explanations to oneself (self-explaining) facilitates that integration process. Previously, self-explanation has been shown to improve the acquisition of problem-solving skills when studying worked-out examples. ..."
Abstract
-
Cited by 556 (22 self)
- Add to MetaCart
Learning involves the integration of new information into existing knowledge. Generoting explanations to oneself (self-explaining) facilitates that integration process. Previously, self-explanation has been shown to improve the acquisition of problem-solving skills when studying worked-out examples
Improved algorithms for optimal winner determination in combinatorial auctions and generalizations
, 2000
"... Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NP-complete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper present ..."
Abstract
-
Cited by 598 (55 self)
- Add to MetaCart
presents a more sophisticated search algorithm for optimal (and anytime) winner determination, including structural improvements that reduce search tree size, faster data structures, and optimizations at search nodes based on driving toward, identifying and solving tractable special cases. We also uncover
Large margin methods for structured and interdependent output variables
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract
-
Cited by 612 (12 self)
- Add to MetaCart
that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains
Decision-Theoretic Planning: Structural Assumptions and Computational Leverage
- JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract
-
Cited by 510 (4 self)
- Add to MetaCart
-related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies
Results 1 - 10
of
1,057,917