Results 1  10
of
521,643
DiffieHellman Oracles
 ADVANCES IN CRYPTOLOGY  CRYPTO '96 , LECTURE NOTES IN COMPUTER SCIENCE
, 1996
"... This paper consists of three parts. First, various types of DiffieHellman oracles for a cyclic group G and subgroups of G are defined and their equivalence is proved. In particular, the security of using a subgroup of G instead of G in the DiffieHellman protocol is investigated. Second, we derive ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
This paper consists of three parts. First, various types of DiffieHellman oracles for a cyclic group G and subgroups of G are defined and their equivalence is proved. In particular, the security of using a subgroup of G instead of G in the DiffieHellman protocol is investigated. Second, we derive
The DiffieHellman Protocol
 DESIGNS, CODES, AND CRYPTOGRAPHY
, 1999
"... The 1976 seminal paper of Diffie and Hellman is a landmark in the history of cryptography. They introduced the fundamental concepts of a trapdoor oneway function, a publickey cryptosystem, and a digital signature scheme. Moreover, they presented a protocol, the socalled DiffieHellman protoco ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
The 1976 seminal paper of Diffie and Hellman is a landmark in the history of cryptography. They introduced the fundamental concepts of a trapdoor oneway function, a publickey cryptosystem, and a digital signature scheme. Moreover, they presented a protocol, the socalled DiffieHellman
Timing Attacks on Implementations of DiffieHellman, RSA, DSS, and Other Systems
, 1996
"... By carefully measuring the amount of time required to perform private key operations, attackers may be able to find fixed DiffieHellman exponents, factor RSA keys, and break other cryptosystems. Against a vulnerable system, the attack is computationally inexpensive and often requires only known cip ..."
Abstract

Cited by 644 (3 self)
 Add to MetaCart
By carefully measuring the amount of time required to perform private key operations, attackers may be able to find fixed DiffieHellman exponents, factor RSA keys, and break other cryptosystems. Against a vulnerable system, the attack is computationally inexpensive and often requires only known
DiffieHellman
, 2010
"... ◮ Asymmetric or publickey cryptography ◮ Originally attributed to Diffie and Hellman in 1975, but later discovered in British classified work of James Ellis in 1971 ◮ Basic idea involves altering traditional symmetry of cryptographic protocols to convey additional info in a public key. The message ..."
Abstract
 Add to MetaCart
◮ Asymmetric or publickey cryptography ◮ Originally attributed to Diffie and Hellman in 1975, but later discovered in British classified work of James Ellis in 1971 ◮ Basic idea involves altering traditional symmetry of cryptographic protocols to convey additional info in a public key. The message
On the Complexity of Breaking the DiffieHellman Protocol
 Computer Science Department
, 1996
"... It is shown that for a class of finite groups, breaking the DiffieHellman protocol is polynomialtime equivalent to computing discrete logarithms. Let G be a cyclic group with generator g and order jGj whose prime factorization is known. When for each large prime factor p of jGj an auxiliary group ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
It is shown that for a class of finite groups, breaking the DiffieHellman protocol is polynomialtime equivalent to computing discrete logarithms. Let G be a cyclic group with generator g and order jGj whose prime factorization is known. When for each large prime factor p of jGj an auxiliary group
Curve25519: new DiffieHellman speed records
 In Public Key Cryptography (PKC), SpringerVerlag LNCS 3958
, 2006
"... Abstract. This paper explains the design and implementation of a highsecurity ellipticcurveDiffieHellman function achieving recordsetting speeds: e.g., 832457 Pentium III cycles (with several side benefits: free key compression, free key validation, and stateoftheart timingattack protection) ..."
Abstract

Cited by 111 (24 self)
 Add to MetaCart
Abstract. This paper explains the design and implementation of a highsecurity ellipticcurveDiffieHellman function achieving recordsetting speeds: e.g., 832457 Pentium III cycles (with several side benefits: free key compression, free key validation, and stateoftheart timingattack protection
On the Difficulty of Breaking the DiffieHellman Protocol
, 1995
"... Let G be a cyclic group with generator g and order jGj with known factorization. We prove that, given an appropriate auxiliary group H p for each large prime factor p of jGj, breaking the DiffieHellman protocol and computing discrete logarithms are polynomialtime equivalent for G. Appropriate au ..."
Abstract
 Add to MetaCart
Let G be a cyclic group with generator g and order jGj with known factorization. We prove that, given an appropriate auxiliary group H p for each large prime factor p of jGj, breaking the DiffieHellman protocol and computing discrete logarithms are polynomialtime equivalent for G. Appropriate
Variations of diffiehellman problem
 In ICICS ’03, volume 2836 of LNCS
, 2003
"... Abstract. This paper studies various computational and decisional DiffieHellman problems by providing reductions among them in the high granularity setting. We show that all three variations of computational DiffieHellman problem: square DiffieHellman problem, inverse DiffieHellman problem and d ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
Abstract. This paper studies various computational and decisional DiffieHellman problems by providing reductions among them in the high granularity setting. We show that all three variations of computational DiffieHellman problem: square DiffieHellman problem, inverse DiffieHellman problem
The DiffieHellman problem and generalization of Verheul’s theorem
, 2009
"... Bilinear pairings on elliptic curves have been of much interest in cryptography recently. Most of the protocols involving pairings rely on the hardness of the bilinear DiffieHellman problem. In contrast to the discrete log (or DiffieHellman) problem in a finite field, the difficulty of this proble ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Bilinear pairings on elliptic curves have been of much interest in cryptography recently. Most of the protocols involving pairings rely on the hardness of the bilinear DiffieHellman problem. In contrast to the discrete log (or DiffieHellman) problem in a finite field, the difficulty
Results 1  10
of
521,643