Results 1  10
of
244,662
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a
Consistency of spectral clustering
, 2004
"... Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spe ..."
Abstract

Cited by 567 (15 self)
 Add to MetaCart
of spectral clustering algorithms, which cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other (unnormalized), is only consistent
Pivoted Document Length Normalization
 SIGIR'96
, 1996
"... Automatic information retrieval systems have to deal with documents of varying lengths in a text collection. Document length normalization is used to fairly retrieve documents of all lengths. In this study, we ohserve that a normalization scheme that retrieves documents of all lengths with similar c ..."
Abstract

Cited by 471 (16 self)
 Add to MetaCart
Automatic information retrieval systems have to deal with documents of varying lengths in a text collection. Document length normalization is used to fairly retrieve documents of all lengths. In this study, we ohserve that a normalization scheme that retrieves documents of all lengths with similar
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 668 (15 self)
 Add to MetaCart
. With this algorithm, fairing very large surfaces, such as those obtained from volumetric medical data, becomes affordable. By combining this algorithm with surface subdivision methods we obtain a very effective fair surface design technique. We then extend the analysis, and modify the algorithm accordingly
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
, 1999
"... In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating highfidelit ..."
Abstract

Cited by 553 (24 self)
 Add to MetaCart
fidelity computer graphics objects using imperfectlymeasured data from the real world. Our approach contains three novel features: an implicit integration method to achieve efficiency, stability, and large timesteps; a scaledependent Laplacian operator to improve the diffusion process; and finally, a robust
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a
A Sense of Self for Unix Processes
 In Proceedings of the 1996 IEEE Symposium on Security and Privacy
, 1996
"... A method for anomaly detection is introduced in which "normal" is defined by shortrange correlations in a process ' system calls. Initial experiments suggest that the definition is stable during normal behavior for standard UNIX programs. Further, it is able to detect several common ..."
Abstract

Cited by 684 (29 self)
 Add to MetaCart
A method for anomaly detection is introduced in which "normal" is defined by shortrange correlations in a process ' system calls. Initial experiments suggest that the definition is stable during normal behavior for standard UNIX programs. Further, it is able to detect several common
Results 1  10
of
244,662