• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 615,751
Next 10 →

Paper # 1508, revised version, Neural Computing and Applications The Construction of Wavelet Network for Speech Signal Processing

by D. Shi, F. Chen, G. S. Ng, J. Gao
"... Wavelet decomposition reconstructs a signal by a series of scaled and translated wavelets. Incorporating discrete wavelet decomposition theory with neural network techniques, wavelet networks have recently emerged as a powerful tool for many applications in the field of signal processing, such as da ..."
Abstract - Add to MetaCart
. The Orthogonal Least Square (OLS) is employed to prune the wavelet network. (3) Our experiments on speech signal processing results show that the wavelet network pruned by OLS achieves the best approximation and prediction capabilities among the representative speech processing techniques. (4) Our proposed

Wavelets and Subband Coding

by Martin Vetterli, Jelena Kovačević , 2007
"... ..."
Abstract - Cited by 608 (32 self) - Add to MetaCart
Abstract not found

Approximate Signal Processing

by S. Hamid Nawab, Alan V. Oppenheim, Anantha P. Chandrakasan, Joseph M. Winograd, Jeffrey T. Ludwig , 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract - Cited by 516 (2 self) - Add to MetaCart
It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing

The Lifting Scheme: A Construction Of Second Generation Wavelets

by Wim Sweldens , 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract - Cited by 541 (16 self) - Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads

A Practical Guide to Wavelet Analysis

by Christopher Torrence, Gilbert P. Compo , 1998
"... A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nio-- Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite-length t ..."
Abstract - Cited by 833 (3 self) - Add to MetaCart
-length time series, and the relationship between wavelet scale and Fourier frequency. New statistical significance tests for wavelet power spectra are developed by deriving theoretical wavelet spectra for white and red noise processes and using these to establish significance levels and confidence

Factoring wavelet transforms into lifting steps

by Ingrid Daubechies, Wim Sweldens - J. Fourier Anal. Appl , 1998
"... ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filter-ing steps, which we call lifting steps but that are also known as ladder structures. This dec ..."
Abstract - Cited by 573 (8 self) - Add to MetaCart
ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filter-ing steps, which we call lifting steps but that are also known as ladder structures

Tinydb: An acquisitional query processing system for sensor networks

by Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong - ACM Trans. Database Syst , 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract - Cited by 609 (8 self) - Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs

Image denoising using a scale mixture of Gaussians in the wavelet domain

by Javier Portilla, Vasily Strela, Martin J. Wainwright, Eero P. Simoncelli - IEEE TRANS IMAGE PROCESSING , 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract - Cited by 514 (17 self) - Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.

Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network

by Kristina Toutanova , Dan Klein, Christopher D. Manning, Yoram Singer - IN PROCEEDINGS OF HLT-NAACL , 2003
"... We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective ..."
Abstract - Cited by 660 (23 self) - Add to MetaCart
We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii

On the Construction of Energy-Efficient Broadcast and Multicast Trees in Wireless Networks

by Jeffrey E. Wieselthier, Gam D. Nguyen, Anthony Ephremides , 2000
"... wieselthier @ itd.nrl.navy.mil nguyen @ itd.nrl.navy.mil ..."
Abstract - Cited by 554 (13 self) - Add to MetaCart
wieselthier @ itd.nrl.navy.mil nguyen @ itd.nrl.navy.mil
Next 10 →
Results 1 - 10 of 615,751
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University