Results 1  10
of
1,750,434
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Algebraic Graph Theory
"... Algebraic graph theory comprises both the study of algebraic objects arising in connection with graphs, for example, automorphism groups of graphs along with the use of algebraic tools to establish interesting properties of combinatorial objects. One of the oldest themes in the area is the investiga ..."
Abstract

Cited by 868 (12 self)
 Add to MetaCart
is the investigation of the relation between properties of a graph and the spectrum of its adjacency matrix. A central topic and important source of tools is the theory of association schemes. An association scheme is, roughly speaking, a collection of graphs on a common vertex set which fit together in a highly
Centrality in social networks conceptual clarification
 Social Networks
, 1978
"... The intuitive background for measures of structural centrality in social networks is reviewed aPzd existing measures are evaluated in terms of their consistency with intuitions and their interpretability. Three distinct intuitive conceptions of centrality are uncovered and existing measures are refi ..."
Abstract

Cited by 1035 (2 self)
 Add to MetaCart
The intuitive background for measures of structural centrality in social networks is reviewed aPzd existing measures are evaluated in terms of their consistency with intuitions and their interpretability. Three distinct intuitive conceptions of centrality are uncovered and existing measures
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
Secure Group Communications Using Key Graphs
, 1998
"... Many emerging applications (e.g., teleconference, realtime information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number of au ..."
Abstract

Cited by 552 (17 self)
 Add to MetaCart
management. We formalize the notion of a secure group as a triple (U; K;R) where U denotes a set of users, K a set of keys held by the users, and R a userkey relation. We then introduce key graphs to specify secure groups. For a special class of key graphs, we present three strategies for securely
Graphbased algorithms for Boolean function manipulation
 IEEE TRANSACTIONS ON COMPUTERS
, 1986
"... In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on th ..."
Abstract

Cited by 3499 (47 self)
 Add to MetaCart
In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 989 (3 self)
 Add to MetaCart
In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0
Results 1  10
of
1,750,434