Results 1  10
of
239,632
The three Platonic models of divergencestrict CSP
"... Abstract. In an earlier paper [13], the author proved that there were three models of CSP that play a special role amongst the ones based on finite observations: the traces (T), stable failures (F) and stable revivals (R) models are successively more refined, but all further models refine R. In the ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
. In the present paper we prove the corresponding result for the divergencestrict models: ones that treat any process that can diverge immediately as the least in the refinement order. We define what it is to be a divergencestrict model, both for general and finitely nondeterministic CSP, and find that in order
A Compositional Approach to Performance Modelling
, 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract

Cited by 746 (102 self)
 Add to MetaCart
Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more
Modeling Strategic Relationships for Process Reengineering
, 1995
"... Existing models for describing a process (such as a business process or a software development process) tend to focus on the \what " or the \how " of the process. For example, a health insurance claim process would typically be described in terms of a number of steps for assessing and appr ..."
Abstract

Cited by 545 (40 self)
 Add to MetaCart
Existing models for describing a process (such as a business process or a software development process) tend to focus on the \what " or the \how " of the process. For example, a health insurance claim process would typically be described in terms of a number of steps for assessing
An introduction to variational methods for graphical models
 TO APPEAR: M. I. JORDAN, (ED.), LEARNING IN GRAPHICAL MODELS
"... ..."
Breaking and Fixing the NeedhamSchroeder PublicKey Protocol using FDR
, 1996
"... In this paper we analyse the well known NeedhamSchroeder PublicKey Protocol using FDR, a refinement checker for CSP. We use FDR to discover an attack upon the protocol, which allows an intruder to impersonate another agent. We adapt the protocol, and then use FDR to show that the new protocol is s ..."
Abstract

Cited by 716 (13 self)
 Add to MetaCart
's identitythey should become sure that they really are talking to each other, rather than to an intruder impersonating the other agent. This is the role of an authentication protocol. In this paper we use the Failures Divergences Refinement Checker (FDR) [11, 5], a model checker for CSP, to analyse
Symbolic Model Checking for Realtime Systems
 INFORMATION AND COMPUTATION
, 1992
"... We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given in an ..."
Abstract

Cited by 574 (50 self)
 Add to MetaCart
We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
Determining the Number of Factors in Approximate Factor Models
, 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract

Cited by 538 (29 self)
 Add to MetaCart
In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors
Empirical exchange rate models of the Seventies: do they fit out of sample?
 JOURNAL OF INTERNATIONAL ECONOMICS
, 1983
"... This study compares the outofsample forecasting accuracy of various structural and time series exchange rate models. We find that a random walk model performs as well as any estimated model at one to twelve month horizons for the dollar/pound, dollar/mark, dollar/yen and tradeweighted dollar exch ..."
Abstract

Cited by 831 (12 self)
 Add to MetaCart
This study compares the outofsample forecasting accuracy of various structural and time series exchange rate models. We find that a random walk model performs as well as any estimated model at one to twelve month horizons for the dollar/pound, dollar/mark, dollar/yen and tradeweighted dollar
A comparison of event models for Naive Bayes text classification
, 1998
"... Recent work in text classification has used two different firstorder probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multivariate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e.g. Larkey ..."
Abstract

Cited by 1002 (27 self)
 Add to MetaCart
Recent work in text classification has used two different firstorder probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multivariate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e
Results 1  10
of
239,632