Results 1  10
of
206,999
The Query Complexity of Learning DFA \Lambda
"... It is known that the class of deterministic finite automata is polynomial time learnable by using membership and equivalence queries. We investigate the query complexity of learning deterministic finite automata, i.e., the number of membership and equivalence queries made during the process of learn ..."
Abstract
 Add to MetaCart
It is known that the class of deterministic finite automata is polynomial time learnable by using membership and equivalence queries. We investigate the query complexity of learning deterministic finite automata, i.e., the number of membership and equivalence queries made during the process
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs
The Lorel Query Language for Semistructured Data
 International Journal on Digital Libraries
, 1997
"... We present the Lorel language, designed for querying semistructured data. Semistructured data is becoming more and more prevalent, e.g., in structured documents such as HTML and when performing simple integration of data from multiple sources. Traditional data models and query languages are inapprop ..."
Abstract

Cited by 734 (29 self)
 Add to MetaCart
We present the Lorel language, designed for querying semistructured data. Semistructured data is becoming more and more prevalent, e.g., in structured documents such as HTML and when performing simple integration of data from multiple sources. Traditional data models and query languages
Query by Committee
, 1992
"... We propose an algorithm called query by committee, in which a committee of students is trained on the same data set. The next query is chosen according to the principle of maximal disagreement. The algorithm is studied for two toy models: the highlow game and perceptron learning of another perceptr ..."
Abstract

Cited by 428 (3 self)
 Add to MetaCart
We propose an algorithm called query by committee, in which a committee of students is trained on the same data set. The next query is chosen according to the principle of maximal disagreement. The algorithm is studied for two toy models: the highlow game and perceptron learning of another
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 510 (17 self)
 Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a
Machine Learning in Automated Text Categorization
 ACM COMPUTING SURVEYS
, 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract

Cited by 1658 (22 self)
 Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual
Results 1  10
of
206,999