Results 1  10
of
16,041
Gradient flows in metric spaces and in the space of probability measures
 LECTURES IN MATHEMATICS ETH ZÜRICH, BIRKHÄUSER VERLAG
, 2005
"... ..."
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 864 (25 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in different areas of applications. In this survey of CLP, a primary goal is to give a systematic description of the major trends in terms of common fundamental concepts. The three main parts cover the theory, implementation issues, and programming for applications.
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory progressed also to the study of socalled stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sumproduct algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.
Using Linear Algebra for Intelligent Information Retrieval
 SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract

Cited by 672 (18 self)
 Add to MetaCart
Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higherorder structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented by 200300 of the largest singular vectors are then matched against user queries. We call this retrieval method Latent Semantic Indexing (LSI) because the subspace represents important associative relationships between terms and documents that are not evident in individual documents. LSI is a completely automatic yet intelligent indexing method, widely applicable, and a promising way to improve users...
GromovWitten classes, quantum cohomology, and enumerative geometry
 Commun. Math. Phys
, 1994
"... The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological ..."
Abstract

Cited by 484 (3 self)
 Add to MetaCart
The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological
Synchronization and linearity: an algebra for discrete event systems
, 2001
"... The first edition of this book was published in 1992 by Wiley (ISBN 0 471 93609 X). Since this book is now out of print, and to answer the request of several colleagues, the authors have decided to make it available freely on the Web, while retaining the copyright, for the benefit of the scientific ..."
Abstract

Cited by 369 (11 self)
 Add to MetaCart
The first edition of this book was published in 1992 by Wiley (ISBN 0 471 93609 X). Since this book is now out of print, and to answer the request of several colleagues, the authors have decided to make it available freely on the Web, while retaining the copyright, for the benefit of the scientific community. Copyright Statement This electronic document is in PDF format. One needs Acrobat Reader (available freely for most platforms from the Adobe web site) to benefit from the full interactive machinery: using the package hyperref by Sebastian Rahtz, the table of contents and all LATEX crossreferences are automatically converted into clickable hyperlinks, bookmarks are generated automatically, etc.. So, do not hesitate to click on references to equation or section numbers, on items of thetableofcontents and of the index, etc.. One may freely use and print this document for one’s own purpose or even distribute it freely, but not commercially, provided it is distributed in its entirety and without modifications, including this preface and copyright statement. Any use of thecontents should be acknowledged according to the standard scientific practice. The
On the geometry of metric measure spaces
 II, ACTA MATH
, 2004
"... We introduce and analyze lower (’Ricci’) curvature bounds Curv(M, d,m) ≥ K for metric measure spaces (M, d,m). Our definition is based on convexity properties of the relative entropy Ent(.m) regarded as a function on the L2Wasserstein space of probability measures on the metric space (M, d). Amo ..."
Abstract

Cited by 248 (10 self)
 Add to MetaCart
We introduce and analyze lower (’Ricci’) curvature bounds Curv(M, d,m) ≥ K for metric measure spaces (M, d,m). Our definition is based on convexity properties of the relative entropy Ent(.m) regarded as a function on the L2Wasserstein space of probability measures on the metric space (M, d
Results 1  10
of
16,041