Results 1  10
of
862
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 770 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have
Variational algorithms for approximate Bayesian inference
, 2003
"... The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents ..."
Abstract

Cited by 440 (9 self)
 Add to MetaCart
theorems are presented to pave the road for automated VB derivation procedures in both directed and undirected graphs (Bayesian and Markov networks, respectively). Chapters 35 derive and apply the VB EM algorithm to three commonlyused and important models: mixtures of factor analysers, linear dynamical
A Unifying Review of Linear Gaussian Models
, 1999
"... Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observa ..."
Abstract

Cited by 351 (18 self)
 Add to MetaCart
Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate
Multicommodity maxflow mincut theorems and their use in designing approximation algorithms
 J. ACM
, 1999
"... In this paper, we establish maxflow mincut theorems for several important classes of multicommodity flow problems. In particular, we show that for any nnode multicommodity flow problem with uniform demands, the maxflow for the problem is within an O(log n) factor of the upper bound implied by ..."
Abstract

Cited by 357 (6 self)
 Add to MetaCart
, network reconfiguration, communication in distributed networks, scientific computing and rapidly mixing Markov chains are also described in the paper.
Effective Bandwidths for Multiclass Markov Fluids and Other ATM Sources
, 1993
"... We show the existence of effective bandwidths for multiclass Markov fluids and other types of sources that are used to model ATM traffic. More precisely,we show that when such sources share a buffer with deterministic service rate, a constraint on the tail of the buffer occupancy distribution is a l ..."
Abstract

Cited by 237 (17 self)
 Add to MetaCart
We show the existence of effective bandwidths for multiclass Markov fluids and other types of sources that are used to model ATM traffic. More precisely,we show that when such sources share a buffer with deterministic service rate, a constraint on the tail of the buffer occupancy distribution is a
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 276 (13 self)
 Add to MetaCart
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models
Pairwise Markov Logic
"... Abstract. For many tasks in fields like computer vision, computational biology and information extraction, popular probabilistic inference methods have been devised mainly for propositional models that contain only unary and pairwise clique potentials. In contrast, statistical relational approaches ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
show that every nonpairwise Markov Logic Network (MLN) can be transformed or ‘reduced’ to a pairwise MLN. Thus, existing, highly efficient probabilistic inference methods can be employed for pairwise MLNs without the overhead of devising or implementing highorder variants. Experiments on two
Particle Filtering with Pairwise Markov Processes
 In ICASSP’03, HongKong
, 2003
"... The estimation of an unobservable process x from an observed process y is often performed in the framework of Hidden Markov Models (HMM). In the linear Gaussian case, the classical recursive solution is given by the Kalman filter. On the other hand, particle filters are Monte Carlo based methods wh ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The estimation of an unobservable process x from an observed process y is often performed in the framework of Hidden Markov Models (HMM). In the linear Gaussian case, the classical recursive solution is given by the Kalman filter. On the other hand, particle filters are Monte Carlo based methods
Efficient structure learning of Markov networks using L1regularization
 In NIPS
, 2006
"... Markov networks are widely used in a wide variety of applications, in problems ranging from computer vision, to natural language, to computational biology. In most current applications, even those that rely heavily on learned models, the structure of the Markov network is constructed by hand, due to ..."
Abstract

Cited by 144 (3 self)
 Add to MetaCart
to the lack of effective algorithms for learning Markov network structure from data. In this paper, we provide a computationally effective method for learning Markov network structure from data. Our method is based on the use of L1 regularization on the weights of the loglinear model, which has the effect
Latent variable models for learning in pairwise Markov networks
 In AAAI
, 2010
"... Abstract Pairwise Markov Networks (PMN) are an important class of Markov networks which, due to their simplicity, are widely used in many applications such as image analysis, bioinformatics, sensor networks, etc. However, learning of Markov networks from data is a challenging task; there are many p ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract Pairwise Markov Networks (PMN) are an important class of Markov networks which, due to their simplicity, are widely used in many applications such as image analysis, bioinformatics, sensor networks, etc. However, learning of Markov networks from data is a challenging task; there are many
Results 1  10
of
862