Results 1 - 10
of
445,240
T.: The density of fan-planar graphs
- CoRR abs/1403.6184
"... A topological drawing of a graph is fan-planar if for each edge e the edges crossing e have a common endpoint on the same side of e, and a fan-planar graph is a graph admitting such a drawing. Equivalently, this can be formulated by two forbidden patterns, one of which is the configuration where e i ..."
Abstract
-
Cited by 2 (1 self)
- Add to MetaCart
A topological drawing of a graph is fan-planar if for each edge e the edges crossing e have a common endpoint on the same side of e, and a fan-planar graph is a graph admitting such a drawing. Equivalently, this can be formulated by two forbidden patterns, one of which is the configuration where e
Properties and Complexity of Fan-Planarity?
"... Abstract. In a fan-planar drawing of a graph an edge can cross only edges with a common end-vertex. Fan-planar drawings have been recently introduced by Kaufmann and Ueckerdt, who proved that every n-vertex fan-planar drawing has at most 5n − 10 edges, and that this bound is tight for n ≥ 20. We ext ..."
Abstract
- Add to MetaCart
extend their result, both from the combinatorial and the algorithmic point of view. We prove tight bounds on the density of constrained versions of fan-planar drawings and study the relationship between fan-planarity and k-planarity. Furthermore, we prove that deciding whether a graph admits a fan-planar
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract
-
Cited by 801 (1 self)
- Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the Sum-Product Algorithm
- IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract
-
Cited by 1787 (72 self)
- Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Design of capacity-approaching irregular low-density parity-check codes
- IEEE TRANS. INFORM. THEORY
, 2001
"... We design low-density parity-check (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming that the unde ..."
Abstract
-
Cited by 581 (6 self)
- Add to MetaCart
We design low-density parity-check (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming
A fast and high quality multilevel scheme for partitioning irregular graphs
- SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract
-
Cited by 1173 (16 self)
- Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
LOF: Identifying Density-Based Local Outliers
- PROCEEDINGS OF THE 2000 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 2000
"... For many KDD applications, such as detecting criminal activities in E-commerce, finding the rare instances or the outliers, can be more interesting than finding the common patterns. Existing work in outlier detection regards being an outlier as a binary property. In this paper, we contend that for m ..."
Abstract
-
Cited by 499 (14 self)
- Add to MetaCart
For many KDD applications, such as detecting criminal activities in E-commerce, finding the rare instances or the outliers, can be more interesting than finding the common patterns. Existing work in outlier detection regards being an outlier as a binary property. In this paper, we contend that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier. This degree is called the local outlier factor (LOF) of an object. It is local in that the degree depends on how isolated the object is with respect to the surrounding neighborhood. We give a detailed formal analysis showing that LOF enjoys many desirable properties. Using realworld datasets, we demonstrate that LOF can be used to find outliers which appear to be meaningful, but can otherwise not be identified with existing approaches. Finally, a careful performance evaluation of our algorithm confirms we show that our approach of finding local outliers can be practical.
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of non-negative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract
-
Cited by 511 (8 self)
- Add to MetaCart
Given a sequence of non-negative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract
-
Cited by 534 (48 self)
- Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
Results 1 - 10
of
445,240