Results 1  10
of
483,468
Adaptive Precision FloatingPoint Arithmetic and Fast Robust Geometric Predicates
 Discrete & Computational Geometry
, 1996
"... Exact computer arithmetic has a variety of uses including, but not limited to, the robust implementation of geometric algorithms. This report has three purposes. The first is to offer fast softwarelevel algorithms for exact addition and multiplication of arbitrary precision floatingpoint values. T ..."
Abstract

Cited by 172 (5 self)
 Add to MetaCart
on computers whose floatingpoint arithmetic uses radix two and exact rounding, including machines complying with the IEEE 754 standard. The inputs to the predicates may be arbitrary single or double precision floatingpoint numbers. C code is publicly available for the 2D and 3D orientation and incircle tests
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
and convolutional codes for lower rates less than 213. Any combination of block and convolutional component codes is possible. Several interleaving techniques are described. At a bit error rate (BER) of lo * the performance is slightly above or around the bounds given by the cutoff rate for reasonably simple block
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
. The decoding of both codes can be tackled with a practical sumproduct algorithm. We prove that these codes are "very good," in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit. This result holds not only for the binarysymmetric channel
Valgrind: A framework for heavyweight dynamic binary instrumentation
 In Proceedings of the 2007 Programming Language Design and Implementation Conference
, 2007
"... Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI ha ..."
Abstract

Cited by 545 (5 self)
 Add to MetaCart
Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI
ERROR BOUNDS ON COMPLEX FLOATINGPOINT MULTIPLICATION WITH AN FMA
, 2013
"... Abstract. The accuracy analysis of complex floatingpoint multiplication done by Brent, Percival, and Zimmermann [Math. Comp., 76:1469–1481, 2007] is extended to the case where a fused multiplyadd (FMA) operation is available. Considering floatingpoint arithmetic with rounding to nearest and unit ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
roundoff u, we show that their bound √ 5 u on the normwise relative error z/z − 1  of a complex product z can be decreased further to 2u when using the FMA in the most naive way. Furthermore, we prove that the term 2u is asymptotically optimal not only for this naive FMAbased algorithm, but also for two
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Results 1  10
of
483,468